Niebuhrmcmahon2151

Z Iurium Wiki

A simple, efficient, and transition metal-free approach to synthesize functionalized 2-(alkynyl)benzonitriles has been developed using suitably functionalized 2H-pyran-2-ones and 4-phenyl/trimethylsilanyl-but-3-yn-2-ones as precursors. The reaction proceeds in the presence of a base at room temperature to yield internal as well as terminal alkynes. The structure of the synthesized compound was confirmed by single-crystal X-ray analysis. The molecular docking study was performed to evaluate the binding mode of action of newly synthesized alkyne derivatives with known human breast cancer target receptor aromatase (PDB ID 3EQM).Various β-indolyl sulfoximidoyl amides were efficiently prepared from ortho-iodoanilines, propargyl bromides, 1 atm of CO, and substituted NH-sulfoximines, through a palladium-catalyzed indole annulation/carbonyl insertion/C-N bond formation cascade. Mostly good to high yields of the products were obtained through this multi-step, one-pot reaction protocol under very gentle reaction conditions. The obtained β-indolyl sulfoximidoyl amides could be converted into biologically interesting sulfoximine analogues that contain a tryptamine moiety.The charge transport properties of biological molecules like peptides and proteins are intensively studied for the great flexibility, redox-state variability, long-range efficiency, and biocompatibility of potential bioelectronic applications. Yet, the electronic interactions of biomolecules with solid metal surfaces, determining the conductivities of the biomolecular junctions, are hard to predict and usually unavailable. Here, we present accurate adsorption structures and energies, electronic band alignment, and interfacial electronic coupling data for all 20 natural amino acids computed using the DFT+Σ scheme based on the vdW-DF and OT-RSH functionals. For comparison, data obtained using the popular PBE functional are provided as well. Tryptophan, compared to other amino acids, is shown to be distinctly exceptional in terms of the electronic properties related to charge transport. Its high adsorption energy, frontier-orbital levels aligned relatively close to the Fermi energy of gold and strong interfacial electronic coupling make it an ideal candidate for facilitating charge transfer on such heterogeneous interfaces. Although the amino acids in peptides and proteins are affected by the structural interactions hindering their contact with the surface, knowledge of the single-molecule surface interactions is necessary for a detailed understanding of such structural effects and tuning of potential applications.Highly efficient blue quantum-dot light-emitting diodes (QLEDs) are still challenging to use in displays and solid-state lighting. selleck Enhancing light outcoupling is one of the most effective methods to improve the performance of blue QLEDs. Here, a strategy for a spectrally independent boost in light outcoupling of blue QLEDs is demonstrated by quasi-periodic wrinkles, which are successfully used as a diffraction grating for extracting trapped light at the substrate/air interface. The quasi-periodic wrinkles can be adjusted from nano-scale to micron-scale under the condition of a constant aspect ratio, and the optimized wrinkle device shows a maximum luminance of 11 769 cd m-2 and a peak EQE of 15.41%. The enhancement of EQE is 49.5% higher compared to that of the reference device. Furthermore, simulation and calculation also indicate that external micron-scattering wrinkle patterns are an attractive option for boosting the performances of blue QLEDs.Upconverting nanoparticles (UCNPs) are being extensively investigated for applications in bioimaging because of their ability to emit ultraviolet, visible, and near-infrared light. NaYF4 is one of the most suitable host matrices for producing high-intensity upconversion fluorescence; however, UCNPs based on NaYF4 are not chemically stable in aqueous media. To prevent dissolution, their surfaces should be modified. We studied the formation of protective phosphonate coatings made of ethylenediamine(tetramethylenephosphonic acid), alendronic acid, and poly(ethylene glycol)-neridronate on cubic NaYF4 nanoparticles and hexagonal Yb3+,Er3+-doped upconverting NaYF4 nanoparticles (β-UCNPs). The effects of synthesis temperature and ultrasonic agitation on the quality of the coatings were studied. The formation of the coatings was investigated by transmission electron microscopy, zeta-potential measurements, and infrared spectroscopy. The quality of the phosphonate coatings was examined with respect to preventing the dissolution of the NPs in phosphate-buffered saline (PBS). The dissolution tests were carried out under physiological conditions (37 °C and pH 7.4) for 3 days and were followed by measurements of the dissolved fluoride with an ion-selective electrode. We found that the protection of the phosphonate coatings can be significantly increased by synthesizing them at 80 °C. At the same time, the coatings obtained at this temperature suppressed the surface quenching of the upconversion fluorescence in β-UCNPs.A highly efficient synthesis of carbamoylated benzimidazo[2,1-a]isoquinolin-6(5H)-ones using 2-arylbenzoimidazoles and oxamic acids was developed. This strategy tolerated various substrates as the starting materials to generate the corresponding products in good yields under metal-free conditions.Low-temperature heat capacity analyses for an NO-encapsulated fullerene derivative revealed (i) low-energy motion and (ii) strong magnetic anisotropy of the NO molecule due to its orbital angular momentum. The low-energy motion was attributed to reorientational motions of the NO molecules, in which only a small number (n ∼ 0.04) of NO molecules were found to participate. The NO molecules were confirmed to be paramagnetic even at 1 K. Ab-initio calculation indicated that the magnetic properties of the NO unit strongly depended on its surroundings, allowing the conformation of the fullerene cage to be estimated.Five-coordinate geometry around ruthenium with highly exposed active sites has attracted intensive scientific interest due to its superior properties and extensive applications. Herein, we report a series of structurally controllable multi-Ru-bridged polyoxometalates, K5NaH10[Ru4(H2O)n(WO2)4(AsW9O33)4]·mH2O 1, 1-dehyd-373K, 1-dehyd-473K, 1-dehyd-573K; n = 4, m = 36; n = 4, m = 6; n = 4, m = 0; n = 0, m = 0 fabricated through a feasible assembly strategy using arsenotungstate 2, KNa12H17Cl2(As4W40O140)·29H2O as a structure-directing unit. Systematic characterization methods identified that the six-coordinate geometry can successfully transform into five-coordinate geometry about active sites (Ru) by removing aqua ligands under high reaction temperatures. All the multi-Ru-bridged polyoxometalates demonstrated strong stability and catalytic effectiveness in the transformation of 1-(4-chlorophenyl)ethanol to 4'-chloroacetophenone under very mild conditions. 1-dehyd-573K, specifically, achieves the best catalytic effectiveness with a turnover frequency (TOF) = 25 100·h-1 owing to its unique five-coordinate geometry on the Ru sites. To our knowledge, 1-dehyd-573K outperforms other POM-based catalysts in the oxidative catalysis of 1-(4-chlorophenyl)ethanol. The heterogeneous polyoxometalates were also proven to be strongly reusable, with their structural integrities well maintained after multiple-cycle catalytic reactions.Fe is not only the most abundant metal on the planet but is also the key component of many enzymes in organisms that are capable of catalyzing many chemical conversions. Mono-dispersed Fe atoms on carbonaceous materials are single atom catalysts (SACs) that function like enzymes. To take advantage of the outstanding catalytic performance of Fe-based SACs, we extended a CO oxidation reaction network over mono-dispersed Fe atoms on graphene (FeGR) by first-principles based calculations. FeGR-catalyzed CO oxidation is initiated with a revised Langmuir-Hinshelwood pathway through a CO-assisted scission of the O-O bond in peroxide species (OCOO). We showed that carbonate species (CO3), which were previously generally considered as a persistent species blocking reaction sites, may form from CO2 and negatively charged O species. This pathway competes with desorption of CO2 and reduction of the Fe center with gaseous CO, and it is exothermic and inevitable, especially at low temperatures and with high CO2 content. Although direct dissociation of CO3 is demanding on FeGR, further adsorption of CO on Fe in CO3 is plausible and takes place spontaneously. We then showed that adsorbed CO may react with CO3, forming a cyclic-carbonate-like species that dissociates easily to CO2. These findings highlight the reaction condition-dependent formation and evolution of CO3 as well as its contribution to CO conversion, and it may extend the understanding of the performance of SACs in low temperature CO oxidation.The accumulation of ΔK280 tau mutant resulting in neurotoxic oligomeric aggregates is an important but yet mysterious procedure in Alzheimer's disease (AD) development. Recently, we proposed a histidine tautomerization hypothesis of tau fibrillogenesis for the pathobiology of AD and other neuro diseases. However, the influence of neutral histidine tautomeric states on tau mutation is still unclear. Herein, we performed replica-exchange molecular dynamics (REMD) simulations to characterize structural features as well as the mode of toxic action of the ΔK280 tau mutant in the presence of histidine tautomerism. Molecular dynamics (MD) simulation results show that the δε tautomeric isomer (having a distinct global energy minimum) had the highest β-sheet structure, which adopts a sheet-rich conformer and may have significant influence on the structural behaviors of ΔK280 tau monomers. Furthermore, clustering, residual contact map, mobility and structural analysis exhibited that the presence of β-strand interactions between stable lysine 8 (K8)-asparagine 13 (N13) and valine 39 (V39)-tyrosine 43 (Y43) residues plus K31-histidine 32 (H32) and K8-N13 (strand-loop-strand [β-meander] structure) helped δε to form toxic aggregates. Moreover, H299 played a more critical role in the conformational instability of the δε than H268. Overall, the results obtained from this study may be used to arrest neurodegeneration in ΔK280 tau mutation carriers as well as increase the understanding of AD-related tau pathogenesis and strengthen the histidine tautomerism hypothesis of misfolded peptide accumulation.Two-component flavoprotein monooxygenases consist of a reductase and an oxygenase enzyme. The proof of functionality of the latter without its counterpart as well as the mechanism of flavin transfer remains unanswered beyond doubt. To tackle this question, we utilized a reductase-free reaction system applying purified 2,5-diketocamphane-monooxygenase I (2,5-DKCMO), a FMN-dependent type II Baeyer-Villiger monooxygenase, and synthetic nicotinamide analogues (NCBs) as dihydropyridine derivatives for FMN reduction. This system demonstrated the stand-alone quality of the oxygenase, as well as the mechanism of FMNH2 transport by free diffusion. The efficiency of this reductase-free system strongly relies on the balance of FMN reduction and enzymatic (re)oxidation, since reduced FMN in solution causes undesired side reactions, such as hydrogen peroxide formation. Design of experiments allowed us to (i) investigate the effect of various reaction parameters, underlining the importance to balance the FMN/FMNH2 cycle, (ii) optimize the reaction system for the enzymatic Baeyer-Villiger oxidation of rac-bicyclo[3.

Autoři článku: Niebuhrmcmahon2151 (Silva Reece)