Nicholsthorpe6980
The results presented here are not only important for the better understanding of the complexation effects in the reduction of Cr(VI), but also crucial for the possible application of the UV/AA process in many other scenarios.The microbial inactivation by cupric ion (Cu(II)) in combination with hydrogen peroxide (H2O2) and hydroxylamine (HA) was investigated for twelve different microorganisms (five Gram-negative bacteria, three Gram-positive bacteria, and four bacteriophages). The inactivation efficacy, protein oxidation, and RNA (or DNA) damage were monitored during and after treatment by Cu(II), Cu(II)/HA, Cu(II)/H2O2 and Cu(II)/HA/H2O2. The rate of microbial inactivation by the (combined) microbicides generally increased in the order of Cu(II) less then Cu(II)/H2O2 less then Cu(II)/HA less then Cu(II)/HA/H2O2; Cu(II)/HA/H2O2 resulted in 0.18-0.31, 0.10-0.18, and 0.55-3.83 log inactivation/min for Gram-negative bacteria, Gram-positive bacteria, and bacteriophages, respectively. The degrees of protein oxidation and RNA (or DNA) damage increased in the order of Cu(II) less then Cu(II)/HA less then Cu(II)/H2O2 less then Cu(II)/HA/H2O2. In particular, Cu(II)/HA/H2O2 led to exceptionally fast inactivation of the viruses. Gram-positive bacteria tended to show higher resistance to microbicides than other microbial species. The microbicidal effects of the combined microbicides on the target microorganisms were explained by the roles of Cu(I) and Cu(III) generated by the redox reactions of Cu(II) with H2O2, HA, and oxygen. Major findings of this study indicate that Cu(II)-based combined microbicides are promising disinfectants for different waters contaminated by pathogenic microorganisms.Soil contamination is a worldwide problem urging for mitigation. Biochar is a carbonaceous material used as soil amendment that can immobilize chemical compounds, potentially turning them unavailable for soil biota. The aim of our study was to evaluate biochar's capacity to immobilize dimethoate in soil and, therefore, decreasing the toxicity to soil organisms. Two biochar application rates (2.5% and 5% w/w) were chosen to assess dimethoate potential immobilization, looking at changes in its toxicity to the collembolan Folsomia candida and the plant Brassica rapa upon soil amendment. Complementarily, chemical analyses were performed on soil pore water. Results showed that biochar may sorb and decrease dimethoate concentrations in soil pore water, influencing dimethoate bioavailability and consequent toxicity. Contrary to dimethoate solo impact on collembolans (LC50 0.69 mg kg-1, EC50 0.46 mg kg-1), their survival rate and offspring production were not affected by dimethoate when biochar was applied, regardless of application rate (LC50 and EC50 > 1.6 mg kg-1). Shoot length, fresh and dry weights of B. rapa were less affected by dimethoate upon biochar addition (EC50 values increase for all endpoints). Our study shows that biochar may contribute to decrease dimethoate bioavailability and toxicity to soil porewater exposed organisms.Developing high value-added products from the waste materials is highly promising from the perspective of environmental protection and resource recovery. Herein, the used cigarette filter was recycled to prepare the flow reactor via a clean and facile strategy. A continuous-flow reduction method was adopted to produce the gold nanoparticles on deacetylated cigarette filter without any extra chemical modifier, reductant or surfactant. The obtained filter was applied as a continuous-flow reactor and showed a high permeability and ultrafast flow catalytic ability. The permeability coefficient of the reactor was about 1.4 × 10-10 m2. This work provided a clean method to covert the waste cigarette filter to useful flow reactor with the relatively simple steps, and the product had a potential for the fast reduction of 4-nitrophenol and dyes including methyl blue and methylene orange.Sensing material with high sensitivity, excellent selectivity and ultra-low detection limit is crucial for monitoring formaldehyde, which is a kind of hazardous gas to human health at very low concentration. Some one-dimensional semiconductor metal oxides show acceptable responses towards formaldehyde. However, the detection limit and selectivity of these sensors are still not satisfied, especially at ppb level. Herein, alkali metals (K, Na) doped CdGa2O4 nanofibers with excellent formaldehyde sensing performance are prepared by an electrospinning method. These nanofibers have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron paramagnetic resonance spectroscopy (EPR), elemental mapping and other techniques. As a result, the sensor based on 7.5 at.% K doped CdGa2O4 gives remarkably improved formaldehyde sensing properties compared with that of pristine CdGa2O4. The greatly increased sensitivity and selectivity should be attributed to the increased chemisorbed oxygen and the enhanced basicity caused by the additional alkali metal, respectively. All in all, the 7.5 at.% K doped CdGa2O4 is a good candidate for the rapid detecting formaldehyde at ppb level.The spermiotoxic properties of aquatic contaminants might be the cause of low fertilization rate and decreased prolificacy, affecting the success of the impacted populations. The genotoxic potential of pesticides in spermatozoa as an undesirable effect on non-target organisms, namely aquatic invertebrates with external fertilization, emerges as a key question in ecogenotoxicological research. Thus, this study aimed to clarify if DNA integrity of red swamp crayfish (Procambarus clarkii) spermatozoa is affected by waterborne pesticides at environmentally relevant concentrations. By adopting an ex vivo approach, six pesticides were addressed in a short-term assay herbicides glyphosate (9 and 90 μg L-1) and penoxsulam (2.3 and 23 μg L-1); insecticides dimethoate (2.4 and 24 μg L-1) and imidacloprid (13.1 and 131 μg L-1); fungicides pyrimethanil (2.2 and 22 μg L-1) and imazalil (16 and 160 μg L-1). Genotoxicity was observed in higher concentrations of glyphosate, penoxsulam, dimethoate, pyrimethanil, and imazalil. Imidacloprid was the only pesticide that did not cause non-specific DNA damage, although displaying pro-oxidant properties. Overall, the present study demonstrated the suitability of the ex vivo approach on spermiotoxicity screening, highlighting the potential ecological impact of pesticides on non-target species, such as P. selleck clarkii, compromising sperm DNA integrity and, subsequently, the population success.Lead (Pb) contaminants in wastewater have inhibited microbial activities and thus exerted high energy consumption in wastewater treatment plants (WWTPs). Current Pb monitoring has been conducted ex situ and off line, unable to affect real-time proactive control and operation. This study targets the crucial challenge of better and faster Pb monitoring by developing novel mm-sized screen-printed solid-state ion-selective membrane (S-ISM) Pb sensors with low-cost, high accuracy and long-term durability and that enable real-time in situ monitoring of Pb(II) ion contamination down to low concentrations (15 ppb-960 ppb) in wastewater. An innovative pH auto-correction data-driven model was built to overcome the inextricable pH inferences on Pb(II) ISM sensors in wastewater. Electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) analysis showed (3,4-ethylenedioxythiophene, EDOT) deposited onto the mm-sized screen-printed carbon electrodes using electropolymerization effectively alleviated the interferences from dissolved oxygen and improved long-term stability in wastewater. Monte Carlo simulation of the nitrification process predicted that real-time, and high accurate in situ monitoring of Pb(II) in wastewater and swift feedback control could save ∼53 % of energy consumption by alleviating the errors from pH and DO impacts in WWTPs.Hexachlorocyclohexane (HCH) isomers pose potential threats to the environment and to public health due to their persistence and high toxicity. In this study, nanoscale zero-valent iron (nZVI) coupled with microbial degradation by indigenous microorganisms with and without biostimulation was employed to remediate soils highly polluted with HCH. The degradation efficiency of total HCHs in both the "nZVI-only" and "Non-amendment" treatments was approximately 50 %, while in the treatment amended with nZVI and acetate, 85 % of total HCHs was removed. Addition of nZVI and acetate resulted in enrichment of anaerobic microorganisms. The results of quantitative PCR (qPCR) and 16S rRNA gene amplicon sequencing revealed that Desulfotomaculum, Dehalobacter, Geobacter, and Desulfuromonas likely contributed to the depletion of HCH isomers. Moreover, some abiotic factors also favored this removal process, including pH, and the generation of iron sulfides as revealed by the result of Mössbauer spectrometer analysis. Our research provides an improved remediation strategy for soils polluted with HCH isomers and an understanding of the synergistic effect of nZVI and indigenous microorganisms.In this study, oxygen vacancies enriched cobalt aluminum hydroxide@hydroxysulfide (CoAl-LDH@CoSx) hollow flowers was synthesized by in-situ etching of CoAl-LDH using sodium sulfide solution. The analysis of SEM, EDS, XRD, and XPS were used to characterize the samples. The as-synthesized 0.2CoAl-LDH@CoSx displayed higher catalysis performance of sulfamethoxazole (SMX) degradation via the activation of PMS than the pristine CoAl-LDH. 98.5 % of SMX (40 μM) was eliminated with 0.1 g/L 0.2CoAl-LDH@CoSx and 0.3 mM PMS at pH 6.0 in 4 min. The degradation fitted with the pseudo-first-order reaction kinetics well with rate constant of 0.89 min-1 for 0.2CoAl-LDH@CoSx/PMS system and 0.55 min-1 for CoAl-LDH/PMS system. Singlet oxygen (1O2) was verified as dominant reactive oxygen species responsible for SMX degradation via quenching tests. Mechanism investigation suggested that the oxygen vacancies, redox cycles of Co(II)/Co(III) and S22-/(S2- and sulfate species) on the surface of 0.2CoAl-LDH@CoSx were crucial for PMS activation. In addition, the plausible degradation pathways of SMX were proposed by analysis of the SMX degradation intermediates. This study not only reveals that 0.2CoAl-LDH@CoSx is an efficient catalyst to activate PMS for SMX degradation, but also shed a novel insight into development of heterogeneous catalysts with oxygen vacancies.Synthetic adhesives in the plywood industry are usually volatile compounds such as formaldehyde-based chemical which are costly and hazardous to health and the environment. This phenomenon promotes an interest in developing bio-boards without synthetic adhesives. This study proposed a novel application of natural mycelium produced during mushroom cultivation as natural bio-adhesive material that convert spent mushroom substrate (SMS) into high-performance bio-board material. Different types of spent mushroom substrates were compressed with specific designed mould with optimal temperature at 160 °C and 10 mPa for 20 min. The bio-board made from Ganoderma lucidum SMS had the highest internal bonding strength up to 2.51 mPa. This is far above the 0.4-0.8 range of China and US national standards. In addition, the material had high water and fire resistance, high bonding and densified structures despite free of any adhesive chemicals. These properties and the low cost one step procedure show the potential as a zero-waste economy chain for sustainable agricultural practice for waste and remediation.