Nevillehamilton0673
Random parameters model has been demonstrated to be an effective method to account for unobserved heterogeneity that commonly exists in highway crash data. However, the predefined single distribution for each random parameter may limit how the unobserved heterogeneity is captured. A more flexible approach is to develop a random parameters model with heterogeneity in means and variances by allowing the mean and variance of potential each random parameter to be an estimable function of explanatory variables. This burgeoning technique for modelling unobserved heterogeneity has been increasingly applied to various safety evaluation scenarios recently. However, the predictive performance of this emerging method, which determines the practicability of the model for a specific circumstance, has never been investigated as far as our knowledge. In addition, the explanatory power by including heterogeneous means and variances of random parameters need to be further investigated to confirm the potential merits of this mns used to estimate the model); 4) the RPNBHMV and RPNB models might be less precise than the NB model when applied to out-of-sample observations. These findings indicate that the RPNBHMV model offers more insights and may be used for explanatory safety analysis for sites where reliable data can be collected. However, the simple NB model is more reliable - at least with the dataset used in this study - than its random parameters model counterparts for other sites where the data are unavailable or unreliable, which is a common safety evaluation scenario in practice.This study investigated the morphology and potentially toxic metal concentrations of paper waste-based biochar (PB) and kitchen waste-based biochar (KB) obtained at 500 and 700 °C. The morphology and potentially toxic metals (Cr, Mn, Cu, Cd, Pb, Zn, Ag, and Ba) concentrations in the biochars were determined by SEM and FT-IR analysis. The Cr, Mn, Cu, and Cd concentrations in PB were low, while the Ba content was relatively high at 0.1 mg∙kg-1. An increase in the terminal temperature led to an increase in the concentrations of Fe/Mn oxide-bound potentially toxic metals of PB, and a decrease in the concentrations of organic matter-bound potentially toxic metals. The Fe/Mn oxide-bound Cr, Mn, Cu, Pb, and Zn concentrations of KB decreased with an increase in the terminal temperature. Therefore, increasing the terminal temperature could reduce the bioavailability of potentially toxic metals in PB and KB. The environmental risk of the different biochars when used for soil remediation was assessed by the potential ecological risk index (RI), and a case study of a Tibetan soil was also conducted. The potentially toxic metal concentrations leached from both PB and KB were lower than the relevant standards. The findings showed that both PB and KB can be safely used for soil remediation.Exhausted olive pomace (EOP) represents a potential candidate side stream to be utilized in biotechnological processes. EOP composition includes significant amounts of extractives and pectin, which are both usually discarded and are not utilized in the valorization process of the raw material. JH-X-119-01 ic50 In this study, organosolv technology was optimized to remove the extractives and pectin using a Central Composite Rotatable Design. Optimal pretreatment conditions were predicted to be at 97.95 °C for 23.18 min, upon addition of 50% (v/v) EtOH in H2O, with 0.5% (w/v) of H2SO4 as catalyst. The composition analysis of liquid fraction revealed a high content of total sugars (17.58 g/L), galacturonic acid (7.05 g/L) and phenolic compounds (2.97 g/L). The liquid fraction was utilized as a carbon source by the heterotrophic marine microalgae Crypthecodinium cohnii, where it was shown to promote lipid accumulation up to 38.5% wt. of cell biomass, even without any additional detoxification step. This study is the first report that shows the use of galacturonic acid as carbon source for the growth of C. cohnii, while underpinning the use of EOP as a promising substrate for the development of zero-waste bioprocesses.
External stressors such as high altitude and low oxygen are known to affect the human microbiome, and in light of the increased occurrence of dental caries and periodontitis in orthodontic patients, the effect of high altitude and the altered oral environment in orthodontic patients on the oral salivary microbiome was researched.
31 orthodontic patients from high altitude, Aseer region and 25 orthodontic patients, residing at sea level, as controls were included. DNA isolation was done from the saliva collected from the study participants. V3 area of 16s RNA was targeted by universal primers through PCR to decipher the salivary microbiome in both the groups.
A total of 11 genera belonging to 4 phyla of bacteria were identified in both groups. The most abundant microbiome at the phylum level was Firmicutes, Bacteroidetes Proteobacteria, and Cyanobacteria. The salivary microbiome was more diverse in sea level controls compared to that of the orthodontic patients at high altitude wherein the presence of only two main phyla Firmicutes and Proteobacteria were seen. The controls revealed Firmicutes, Proteobacteria, Bacteroidetes and Cyanobacteria.
The findings of the study suggest that the biodiversity of the salivary microbiome is severely perturbed under the cumulative influences of high altitude and presence of fixed orthodontic appliance. Under these circumstances, a strict and meticulous oral hygiene regimen should be recommended and followed to avoid harmful effects on the periodontal tissues.
The findings of the study suggest that the biodiversity of the salivary microbiome is severely perturbed under the cumulative influences of high altitude and presence of fixed orthodontic appliance. Under these circumstances, a strict and meticulous oral hygiene regimen should be recommended and followed to avoid harmful effects on the periodontal tissues.Pyrolyzing precursors containing iron, nitrogen and carbon elements is a commonly used process for synthesizing FeNC catalysts for oxygen reduction reaction (ORR). Generally, aggregation of iron-based species is prone to occur because of a lack of chemical bonds between iron-based species and carbon matrix and synthesizing highly porous FeNC catalysts is difficult because carbon skeleton is prone to collapse during pyrolysis. Herein, highly porous FeNC catalysts with fine iron-based species are synthesized by selecting glucose as carbon source, FeCl3 as iron source, and urea-derived g-C3N4 as nitrogen source, iron anchoring and stabilizing species, and pore-forming template. The multi-role g-C3N4-derived catalyst synthesized at 1100 °C (FeNC1100) has fine iron-based species, large specific surface area (737 m2 g-1), and extremely high pore volume (2.66 cm3 g-1). Accordingly, FeNC1100 shows a larger half-wave potential (E1/2 = 0.894 V), a higher stability (ΔE1/2 = 6 mV) after 10,000 potential cycles in alkaline media, and a higher peak power density (P = 152 mW cm-2) when employed as ORR catalyst of zinc-air battery, which are all superior to those of the commercial Pt/C catalyst (E1/2 = 0.