Neumannpope3161

Z Iurium Wiki

Cystic fibrosis (CF) represents one of the major genetic and chronic lung diseases affecting Caucasians of European descent. Patients with CF suffer from recurring infections that lead to further damage of the lungs. Pulmonary infection due to Pseudomonas aeruginosa is most prevalent, further increasing CF-related mortality. The present study describes the phenotypic and genotypic variations among 36 P. aeruginosa isolates obtained serially from a non-CF and five CF patients before, during and after lung transplantation (LTx). The classical and genomic investigation of these isolates revealed a common mucoid phenotype and only subtle differences in the genomes. Isolates originating from an individual patient shared ≥98.7% average nucleotide identity (ANI). However, when considering isolates from different patients, substantial variations in terms of sequence type (ST), virulence factors and antimicrobial resistance (AMR) genes were observed. Whole genome multi-locus sequence typing (MLST) confirmed the presence of unique STs per patient regardless of the time from LTx. It was supported by the monophyletic clustering found in the genome-wide phylogeny. The antibiogram shows that ≥91.6% of the isolates were susceptible to amikacin, colistin and tobramycin. For other antibiotics from the panel, isolates frequently showed resistance. Alternatively, a comparative analysis of the 36 P. aeruginosa isolates with 672 strains isolated from diverse ecologies demonstrated clustering of the CF isolates according to the LTx patients from whom they were isolated. We observed that despite LTx and associated measures, all patients remained persistently colonized with similar isolates. The present study shows how whole genome sequencing (WGS) along with phenotypic analysis can help us understand the evolution of P. aeruginosa over time especially its antibiotic resistance.Monitored natural recovery (MNR) is an in situ technique of conventional remediation for the treatment of contaminated sediments that relies on natural processes to reduce the bioavailability or toxicity of contaminants. Metabarcoding and bioinformatics approaches to infer functional prediction were applied in bottom sediments of a tributary drainage channel of Río de La Plata estuary, in order to assess the biological contribution to MNR. IBET762 Hydrocarbon concentration in water samples and surface sediments was below the detection limit. Surface sediments were represented with high available phosphorous, alkaline pH, and the bacterial classes Anaerolineae, Planctomycetia, and Deltaproteobacteria. The functional prediction in surface sediments showed an increase of metabolic activity, carbon fixation, methanogenesis, and synergistic relationships between Archaeas, Syntrophobacterales, and Desulfobacterales. The prediction in non-surface sediments suggested the capacity to respond to different kinds of environmental stresses (oxidative, osmotic, heat, acid pH, and heavy metals), predicted mostly in Lactobacillales order, and the capacity of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinomyces classes to degrade xenobiotic compounds. Canonical correspondence analysis (CCA) suggests that depth, phosphate content, redox potential, and pH were the variables that structured the bacterial community and not the hydrocarbons. The characterization of sediments by metabarcoding and functional prediction approaches, allowed to assess how the microbial activity would contribute to the recovery of the site.Domestication is a key factor of genetic variation; however, the mechanism by which domestication alters gut microbiota is poorly understood. Here, to explore the variation in the structure, function, rapidly evolved genes (REGs), and enzyme profiles of cellulase and hemicellulose in fecal microbiota, we studied the fecal microbiota in wild, half-blood, and domestic yaks based on 16S rDNA sequencing, shotgun-metagenomic sequencing, and the measurement of short-chain-fatty-acids (SCFAs) concentration. Results indicated that wild and half-blood yaks harbored an increased abundance of the phylum Firmicutes and reduced abundance of the genus Akkermansia, which are both associated with efficient energy harvesting. The gut microbial diversity decreased in domestic yaks. The results of the shotgun-metagenomic sequencing showed that the wild yak harbored an increased abundance of microbial pathways that play crucial roles in digestion and growth of the host, whereas the domestic yak harbored an increased abundance of methane-metabolism-related pathways. Wild yaks had enriched amounts of REGs in energy and carbohydrate metabolism pathways, and possessed a significantly increased abundance of cellulases and endohemicellulases in the glycoside hydrolase family compared to domestic yaks. The concentrations of acetic, propionic, n-butyric, i-butyric, n-valeric, and i-valeric acid were highest in wild yaks. Our study displayed the domestic effect on the phenotype of composition, function in gut microbiota, and SCFAs associated with gut microbiota, which had a closely association with the growth performance of the livestock. These findings may enlighten the researchers to construct more links between economic characteristics and gut microbiota, and develop new commercial strains in livestock based on the biotechnology of gut microbiota.Fusarium oxysporum is a soilborne fungal plant pathogen responsible for causing disease in many economically important crops with "special forms" (formae speciales) adapted to infect specific plant hosts. F. oxysporum f. sp. pisi (FOP) is the causal agent of Fusarium wilt disease of pea. It has been reported in every country where peas are grown commercially. Disease is generally controlled using resistant cultivars possessing single major gene resistance and therefore there is a constant risk of breakdown. The main aim of this work was to characterise F. oxysporum isolates collected from diseased peas in the United Kingdom as well as FOP isolates obtained from other researchers representing different races through sequencing of a housekeeping gene and the presence of Secreted In Xylem (SIX) genes, which have previously been associated with pathogenicity in other F. oxysporum f. spp. F. oxysporum isolates from diseased United Kingdom pea plants possessed none or just one or two known SIX genes with no consistent pattern of presence/absence, leading to the conclusion that they were foot-rot causing isolates rather than FOP. In contrast, FOP isolates had different complements of SIX genes with all those identified as race 1 containing SIX1, SIX6, SIX7, SIX9, SIX10, SIX11, SIX12, and SIX14. FOP isolates that were identified as belonging to race 2 through testing on differential pea cultivars, contained either SIX1, SIX6, SIX9, SIX13, SIX14 or SIX1, SIX6, SIX13. Significant upregulation of SIX genes was also observed in planta over the early stages of infection by different FOP races in pea roots. Race specific SIX gene profiling may therefore provide potential targets for molecular identification of FOP races but further research is needed to determine whether variation in complement of SIX genes in FOP race 2 isolates results in differences in virulence across a broader set of pea differential cultivars.With modernization of safety standards for microbiology outreach teaching laboratories, ethical challenges arise in teaching microbiology for the public good without short-changing students in under-resourced situations, or when institutional support is subpar. Still, educators want students to engage using applied skills for inquiry, research-based microbial learning activities - safely. Following several United States microbial outbreaks, federal investigation traced sources back to teaching laboratories. Policy discussions ensued. The American Society for Microbiology (ASM) Task Force provides recommended but not mandated guidelines; however, guidelines are not amenable by all. Here, a real-world, ethical scenario of a university-level outreach microbiology laboratory course hosted at several locations provides context for under-resourced challenges in safety compliance. In this example of biomedical and public health ethical considerations, upper administration puts the onus on instructors to assure safe labs for their students and the general public. Temporarily hired instructors without curriculum or sufficient institutional support are put in precarious positions with often egregious practices to get the job done. This scenario is examined with different public health ethical frameworks and principles non-maleficence, beneficence, health maximization, efficiency of policy regulations, respect for institutional and instructor autonomy, justice, and proportionality balancing stakeholder concerns. Sample curricular strategies are employed to mitigate these challenges. Taking a utilitarianism framework of the greatest good for the most benefit, this paper advocates for social justice supporting access to education as a moral duty. Administrations should ensure instructors are supported sufficiently to provide safe, authentic learning experiences. Solutions for under-resourced outreach teaching are needed for public trust.Bacillus subtilis develops genetic competence for the uptake of foreign DNA when cells enter stationary phase and a high cell density is reached. These signals are integrated by the competence transcription factor ComK, which is subject to transcriptional, post-transcriptional and post-translational regulation. Many proteins are involved in the development of competence, both to control ComK activity and to mediate DNA uptake. However, for many proteins, the precise function they play in competence development is unknown. In this study, we assessed whether proteins required for genetic transformation play a role in the activation of ComK or rather act downstream of competence gene expression. While these possibilities could be distinguished for most of the tested factors, we assume that two proteins, PNPase and the transcription factor YtrA, are required both for full ComK activity and for the downstream processes of DNA uptake and integration. Further analyses of the role of the transcription factor YtrA for the competence development revealed that the overexpression of the YtrBCDEF ABC transporter in the ytrA mutant causes the loss of genetic competence. Moreover, overexpression of this ABC transporter also affects biofilm formation. Since the ytrGABCDEF operon is naturally induced by cell wall-targeting antibiotics, we tested the cell wall properties upon overexpression of the ABC transporter and observed an increased thickness of the cell wall. The composition and properties of the cell wall are important for competence development and biofilm formation, suggesting that the observed phenotypes are the result of the increased cell wall thickness as an outcome of YtrBCDEF overexpression.The testis expresses many long noncoding RNAs (lncRNAs), but their functions and overview of lncRNA variety are not well understood. The mouse Prss/Tessp locus contains six serine protease genes and two lncRNAs that have been suggested to play important roles in spermatogenesis. Here, we found a novel testis-specific lncRNA, Start (Steroidogenesis activating lncRNA in testis), in this locus. Start is 1822 nucleotides in length and was found to be localized mostly in the cytosol of germ cells and Leydig cells, although nuclear localization was also observed. Start-knockout (KO) mice generated by the CRISPR/Cas9 system were fertile and showed no morphological abnormality in adults. However, in adult Start-KO testes, RNA-seq and qRT-PCR analyses revealed an increase in the expression of steroidogenic genes such as Star and Hsd3b1, while ELISA analysis revealed that the testosterone levels in serum and testis were significantly low. Interestingly, at 8 days postpartum, both steroidogenic gene expression and testosterone level were decreased in Start-KO mice.

Autoři článku: Neumannpope3161 (Pate Holdt)