Nelsonmollerup7889
Our recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.Passive radiative cooling is an emerging field and needs further development of material. Hence, the computational approach needs to establish for effective metamaterial design before fabrication. The finite difference time domain (FDTD) method is a promising numerical strategy to study electromagnetic interaction with the material. Here, we simulate using the FDTD method and report the behavior of various nanoparticles (SiO2, TiO2, Si3N4) and void dispersed polymers for the solar and thermal infrared spectrums. We propose the algorithm to simulate the surface emissive properties of various material nanostructures in both solar and thermal infrared spectrums, followed by cooling performance estimation. It is indeed found out that staggered and randomly distributed nanoparticle reflects efficiently in the solar radiation spectrum, become highly reflective for thin slab and emits efficiently in the atmospheric window (8-13 µm) over the parallel arrangement with slight variation. Higher slab thickness and concentration yield better reflectivity in the solar spectrum. SiO2-nanopores in a polymer, Si3N4 and TiO2 with/without voids in polymer efficiently achieve above 97% reflection in the solar spectrum and exhibits substrate independent radiative cooling properties. SiO2 and polymer combination alone is unable to reflect as desired in the solar spectrum and need a highly reflective substrate like silver.Stephanandra incisa is a wild-type shrub with beautiful leaves and white flowers and is commonly used as a garden decoration accessory. However, the limited availability of genomic data of S. incisa has restricted its breeding process. Here, we identified EST-SSR markers using de novo transcriptome sequencing. In this study, a transcriptome database containing 35,251 unigenes, having an average length of 985 bp, was obtained from S. incisa. From these unigene sequences, we identified 5,555 EST-SSRs, with a distribution density of one SSR per 1.60 kb. Dinucleotides (52.96%) were the most detected SSRs, followed by trinucleotides (34.64%). From the EST-SSR loci, we randomly selected 100 sites for designing primer and used the DNA of 60 samples to verify the polymorphism. The average value of the effective number of alleles (Ne), Shannon's information index (I), and expective heterozygosity (He) was 1.969, 0.728, and 0.434, respectively. The polymorphism information content (PIC) value was in the range of 0.108 to 0.669, averaging 0.406, which represented a middle polymorphism level. Cluster analysis of S. incisa were also performed based on the obtained EST-SSR data in our work. As shown by structure analysis, 60 individuals could be classified into two groups. Thus, the identification of these novel EST-SSR markers provided valuable sequence information for analyzing the population structure, genetic diversity, and genetic resource assessment of S. incisa and other related species.Roselle-Hibiscus sabdariffa L. leaves at different stages of growth, calyces and seeds were analyzed for nutritional and anti-nutritional factors. All the treatments contained a good but varied proportion of carbohydrate in a range of 26.93-54.13%, crude protein from 5.7 to 27.06%, crude fat 1.16-13.09%, crude fibre 15.75-36.10%, energy 631.36-1065 kJ, ash 6.08-13.74% and moisture content 6.00-9.7%. The vitamins A, C and E were also found to be present in all the treatments in a different but substantial amount. The calcium, magnesium and iron contents in all the treatments were higher than the recommended daily allowance of 1250, 350, and 15 mg for adults, while the phosphorus and sodium values in all the treatments were below 1000 and 1500 mg RDA for adults. However, the Na + /K + for all the treatments were lower than 1. Selleckchem SU5416 The values of anti-nutrients in the samples were small except post-flowering red which had high phytate content of 21.02%, although this can be easily reduced during processes like boiling and cooking. Thus, both cultivars of roselle contain high nutritional, elemental, and vitamins compositions and small content of anti-nutrients.Reservoir computing (RC) is a recently introduced bio-inspired computational framework capable of excellent performances in the temporal data processing, owing to its derivation from the recurrent neural network (RNN). It is well-known for the fast and effective training scheme, as well as the ease of the hardware implementation, but also the problematic sensitivity of its performance to the optimizable architecture parameters. In this article, a particular time-delayed RC with a single clamped-clamped silicon beam resonator that exhibits a classical Duffing nonlinearity is presented and its optimization problem is studied. Specifically, we numerically analyze the nonlinear response of the resonator and find a quasi-linear bifurcation point shift of the driving voltage with the driving frequency sweeping, which is called Bifurcation Point Frequency Modulation (BPFM). Furthermore, we first proposed that this method can be used to find the optimal driving frequency of RC with a Duffing mechanical resonator for a given task, and then put forward a comprehensive optimization process.