Myrickbond8632
05). This study showed the important role of nanocomposite in designing novel antibacterial and antibiofilm agents to combat the P. aeruginosa and S. aureus biofilm-related infections.Post-kala-azar dermal leishmaniasis (PKDL) is a complication of visceral leishmaniasis (VL) that most frequently occurs after an episode of VL caused by Leishmania donovani. In this case report, we present a 21-year-old male patient with persistent skin lesions and recurrent visceral leishmaniasis (VL) due to Leishmania infantum. The patient did not respond to multiple lines of anti-leishmanial treatment (including Liposomal amphotericin B and miltefosine) and later died from cerebral lesions presumed to be secondary to persistent VL.Unicellular organisms live under diverse stressful conditions and must respond and adapt quickly to these stresses. When these stresses persist, cells favor a transition to quiescence. There are changes to many processes when cells begin their entry into quiescence. It has been reported that Hsp82 plays an important role in several such processes, and its distribution and activity change according to nutrient conditions. In this study, we found that the subcellular distribution of Hsp82 is regulated by its co-chaperone Ppt1. Under starvation conditions, Ppt1 expression was significantly reduced by a TOR-independent pathway. Furthermore, we found that Ppt1 regulates Hsp82 distribution in the cytoplasm and nucleus by dephosphorylating the S485 residue on Hsp82. The Hsp82S485A strain has impaired membrane-related protein transport, and its cell size did not become larger in quiescence compared to log phase, resulting in failure to survive during starvation.Nonribosomal peptides (NRPs) are natural products that are biosynthesized by large multi-enzyme assembly lines called nonribosomal peptide synthetases (NRPSs). We have previously discovered that backbone or side chain methylation of NRP residues is carried out by an interrupted adenylation (A) domain that contains an internal methyltransferase (M) domain, while maintaining a monolithic AMA fold of the bifunctional enzyme. A key question that has remained unanswered is at which step of the assembly line mechanism the methylation by these embedded M domains takes place. Does the M domain methylate an amino acid residue tethered to a thiolation (T) domain on same NRPS module (in cis), or does it methylate this residue on a nascent peptide tethered to a T domain on another module (in trans)? In this study, we investigated the kinetics of methylation by wild-type AMAT tridomains from two NRPSs involved in biosynthesis of anticancer depsipeptides thiocoraline and echinomycin, and by mutants of these domains, for which methylation can occur only in trans. The analysis of the methylation kinetics unequivocally demonstrated that the wild-type AMATs methylate overwhelmingly in cis, strongly suggesting that this is also the case in the context of the entire NRPS assembly line process. The mechanistic insight gained in this study will facilitate rational genetic engineering of NRPS to generate unnaturally methylated NRPs.Genomic DNA in eukaryotes is organized into chromatin through association with core histone proteins to form nucleosomes. To understand the structure and function of chromatin, we must determine the structures of nucleosomes containing native DNA sequences. However, to date, our knowledge of nucleosome structures is mainly based on the crystallographic studies of the nucleosomes containing non-native DNA sequences. Here, we discuss the technical issues related to the determination of the nucleosome structures and review the few structural studies on native-like nucleosomes. We show how an antibody fragment-aided single-particle cryo-EM can be a useful method to determine the structures of nucleosomes containing genomic DNA. Finally, we provide a perspective for future structural studies of some native-like nucleosomes that play critical roles in chromatin functions.The stability of membrane proteins differs from globular proteins due to the presence of nonpolar membrane-spanning regions. Using a dataset of 929 membrane protein mutations whose effects on thermal stability (ΔTm) were experimentally determined, we found that the average ΔTm due to 190 stabilizing and 232 destabilizing mutations occurring in membrane-spanning regions are 2.43 ± 3.1 and - 5.48 ± 5.5 °C, respectively. The ΔTm values for mutations occurring in solvent-exposed regions are 2.56 ± 2.82 and - 6.8 ± 7.2 °C. We have systematically analyzed the factors influencing the stability of mutants and observed that changes in hydrophobicity, number of contacts between Cα atoms and frequency of aliphatic residues are important determinants of the stability change induced by mutations occurring in membrane-spanning regions. We have developed structure- and sequence-based machine learning predictors of ΔTm due to mutations specifically for membrane proteins. They showed a correlation and mean absolute error (MAE) of 0.72 and 2.85 °C, respectively, between experimental and predicted ΔTm for mutations in membrane-spanning regions on 10-fold group-wise cross-validation. The average correlation and MAE for mutations in aqueous regions are 0.73 and 3.7 °C, respectively. These MAE values are about 50% lower than standard deviations from the mean ΔTm values. The reliability of the method was affirmed on a test set of mutations occurring in evolutionary independent protein sequences. The developed MPTherm-pred server for predicting thermal stability changes upon mutations in membrane proteins is available at https//web.iitm.ac.in/bioinfo2/mpthermpred/. learn more Our results provide insights into factors influencing the stability of membrane proteins and can aid in designing mutants that are more resistant to thermal stress.SARS-CoV-2 uses -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins. Because modulating -1 PRF can attenuate the virus, ligands binding to the RNA pseudoknot that stimulates -1 PRF may have therapeutic potential. Mutations in the pseudoknot have occurred during the pandemic, but how they affect -1 PRF efficiency and ligand activity is unknown. Studying a panel of six mutations in key regions of the pseudoknot, we found that most did not change -1 PRF levels, even when base-pairing was disrupted, but one led to a striking 3-fold decrease, suggesting SARS-CoV-2 may be less sensitive to -1 PRF modulation than expected. Examining the effects of a small-molecule -1 PRF inhibitor active against SARS-CoV-2, it had a similar effect on all mutants tested, regardless of basal -1 PRF efficiency, indicating that anti-frameshifting activity can be resistant to natural pseudoknot mutations. These results have important implications for therapeutic strategies targeting SARS-CoV-2 through modulation of -1 PRF.