Munkbruun3840

Z Iurium Wiki

Proper intubation is one of the key factors that influences the intratracheal delivery of dry powder formulation to the deep lung region of the mouse.Cancer stem cells play a vital role against clinical therapies, contributing to tumor relapse. There are many oncogenes involved in tumorigenesis and the initiation of cancer stemness properties. Since gene expression in the formation of colorectal cancer-derived tumorspheres is unclear, it takes time to discover the mechanisms working on one gene at a time. This study demonstrates a method to quickly discover the driver genes involved in the survival of the colorectal cancer stem-like cells in vitro. Colorectal HT29 cancer cells that express the LGR5 when cultured as spheroids and accompany an increase CD133 stemness markers were selected and used in this study. The protocol presented is used to perform RNAseq with available bioinformatics to quickly uncover the overexpressed driver genes in the formation of colorectal HT29-derived stem-like tumorspheres. The methodology can quickly screen and discover potential driver genes in other disease models.Macular degeneration typically results in heterogeneous binocular central visual defects. Currently available approaches to assess central visual field, like the microperimetry, can test only one eye at a time. Therefore, they cannot explain how the defects in each eye affect the binocular interaction and real-world function. Dichoptic stimulus presentation with a gaze-controlled system could provide a reliable measure of monocular/binocular visual fields. However, dichoptic stimulus presentation and simultaneous eye-tracking are challenging because optical devices of instruments that present stimulus dichoptically (e.g., haploscope) always interfere with eye-trackers (e.g., infrared video-based eye-trackers). Therefore, the goals were 1) to develop a method for dichoptic stimulus presentation with simultaneous eye-tracking, using 3D-shutter glasses and 3D-ready monitors, that is not affected by interference and 2) to use this method to develop a protocol for assessing central visual field in subjects with central vision loss. The results showed that this setup provides a practical solution for reliably measuring eye-movements in dichoptic viewing condition. In addition, it was also demonstrated that this method can assess gaze-controlled binocular central visual field in subjects with central vision loss.Epithelial organoid models serve as valuable tools to study the basic biology of an organ system and for disease modeling. When grown as organoids, epithelial progenitor cells can self-renew and generate differentiating progeny that exhibit cellular functions similar to those of their in vivo counterparts. Herein we describe a step-by-step protocol to isolate region-specific progenitors from human lung and generate 3D organoid cultures as an experimental and validation tool. We define proximal and distal regions of the lung with the goal of isolating region-specific progenitor cells. We utilized a combination of enzymatic and mechanical dissociation to isolate total cells from the lung and trachea. Specific progenitor cells were then fractionated from the proximal or distal origin cells using fluorescence associated cell sorting (FACS) based on cell type-specific surface markers, such as NGFR for sorting basal cells and HTII-280 for sorting alveolar type II cells. Isolated basal or alveolar type II progenitors were used to generate 3D organoid cultures. Both distal and proximal progenitors formed organoids with a colony forming efficiency of 9-13% in distal region and 7-10% in proximal region when plated 5000 cell/well on day 30. Distal organoids maintained HTII-280+ alveolar type II cells in culture whereas proximal organoids differentiated into ciliated and secretory cells by day 30. These 3D organoid cultures can be used as an experimental tool for studying the cell biology of lung epithelium and epithelial mesenchymal interactions, as well as for the development and validation of therapeutic strategies targeting epithelial dysfunction in a disease.Anesthetics influence consciousness in part via their actions on thalamocortical circuits. However, the extent to which volatile anesthetics affect distinct cellular and network components of these circuits remains unclear. Ex vivo brain slices provide a means by which investigators may probe discrete components of complex networks and disentangle potential mechanisms underlying the effects of volatile anesthetics on evoked responses. To isolate potential cell type- and pathway-specific drug effects in brain slices, investigators must be able to independently activate afferent fiber pathways, identify non-overlapping populations of cells, and apply volatile anesthetics to the tissue in aqueous solution. In this protocol, methods to measure optogenetically-evoked responses to two independent afferent pathways to neocortex in ex vivo brain slices are described. BIIB129 Extracellular responses are recorded to assay network activity and targeted whole-cell patch clamp recordings are conducted in somatostatin- and parvalbumin-positive interneurons. Delivery of physiologically relevant concentrations of isoflurane via artificial cerebral spinal fluid to modulate cellular and network responses is described.Spectral-domain optical coherence tomography (SD-OCT) is useful for visualizing retinal and ocular structures in vivo. In research, SD-OCT is a valuable tool to evaluate and characterize changes in a variety of retinal and ocular disease and injury models. In light induced retinal degeneration models, SD-OCT can be used to track thinning of the photoreceptor layer over time. In glaucoma models, SD-OCT can be used to monitor decreased retinal nerve fiber layer and total retinal thickness and to observe optic nerve cupping after inducing ocular hypertension. In diabetic rodents, SD-OCT has helped researchers observe decreased total retinal thickness as well as decreased thickness of specific retinal layers, particularly the retinal nerve fiber layer with disease progression. In mouse models of myopia, SD-OCT can be used to evaluate axial parameters, such as axial length changes. Advantages of SD-OCT include in vivo imaging of ocular structures, the ability to quantitatively track changes in ocular dimensions over time, and its rapid scanning speed and high resolution.

Autoři článku: Munkbruun3840 (Pittman Shapiro)