Mosegaardbroberg9450
In relation to the parent complexes, all designed Re(i) carbonyls were found to show enhanced photoluminescence, both in solution and in solid state. The investigated ligands and complexes were also preliminarily tested as luminophores in light emitting diodes with the structures ITO/PEDOTPSS/compound/Al and ITO/PEDOTPSS/PVKPBDcompound/Al. The pronounced effect of the ligand chemical structure on electroluminescence ability was clearly visible.A propeller-like pyrene derivative of diphenyl-1-pyrenylphosphine (DPPP) is designed and synthesized. DPPP exhibits a unique photo-triggered AIE/ACQ transition with a remarkable third-order nonlinear optical signal change, which is proved to originate from the photo-induced oxidation of a phosphorus atom.Various conjugation techniques are used to affect the intracellular delivery of bioactive small molecules. However, the ability to track changes in the phenotype when applying these tools remains poorly studied. Blasticidin S We addressed this issue by having prepared a focused library of heterobivalent constructs based on Rho kinase inhibitor HA-100. By comparing the induction of the phenotype of interest, cell viability and cellular uptake, we demonstrate that various conjugates indeed lead to divergent cellular outcomes.Rare earth nickelates (RNiO3), consisting of a series of correlated transition metal oxides, have received increasing attention due to their sharp metal-to-insulator transition (MIT). Previous reports focused on understanding the origin and modulation of thermally driven MIT by strain effects, cation doping, or external electric field. Recently, it was reported that isothermal chemical doping of hydrogen can induce MIT and increase resistivity by ∼8 orders of magnitude, which opens up the possibility of utilizing these oxides to develop advanced electronic and sensing devices. In this study, we applied first principles methods to study geometric and electronic structures of MIT driven by hydrogen doping in a series of rare earth nickelates RNiO3 (R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Yb). Hybrid functional HSE06 calculations predict that all oxides under study exhibit sharp MIT, opening up an ∼3 eV band gap after hydrogen doping, with band gap values slightly increasing from Pr to Yb. We find that the R site elements play a key role in determining hydrogen adsorption energies and hydrogen migration barriers, which controls how difficult it would be for the hydrogen atoms to migrate inside the oxides. Detailed information on geometries, electronic structures, migration barriers and adsorption energies of hydrogen provides guidance for further optimizing these materials for future experiments and applications.The gallium-68 radiolabelling of new functional graphene oxide composites is reported herein along with kinetic stability investigations of the radio-nanohybrids under different environments and insights into their surface characteristics by SEM and XPS. The present work highlights the potential of graphene oxides as nanocarriers for small molecules such as bis(thiosemicarbazonato) complexes to act as multifunctional platforms for rapid and effective radioimaging agent incorporation.The amino acid lysine has been shown to prevent water crystallization at low temperatures in saturated aqueous solutions [S. Cerveny and J. Swenson, Phys. Chem. Chem. Phys., 2014, 16, 22382-22390]. Here, we investigate two ratios of water and lysine (5.4 water molecules per lysine (saturated) and 11 water molecules per lysine) by means of the complementary use of computer simulations and neutron diffraction. By performing a detailed structural analysis we have been able to explain the anti-freeze properties of lysine by the strong hydrogen bond interactions of interstitial water molecules with lysine that prevent them from forming crystalline seeds. Additional water molecules beyond the 1 5.4 proportion are no longer tightly bonded to lysine and therefore are free to form crystals.Classic prodrug strategies rely on covalent modification of active drugs to provide systems with superior pharmacokinetic properties than the parent drug and facilitate administration. Supramolecular chemistry is providing a new approach to developing prodrug-like systems, wherein the characteristics of a drug are modified in a beneficial manner by creating host-guest complexes that then permit the stimulus-induced release of the active species in a controlled manner. These complexes are termed "supramolecular prodrugs". In this review, we outline the concept of supramolecular drugs via host-guest chemistry and detail progress made in the area. This summary is designed to highlight the many advantages of supramolecular prodrugs, including ease-of-preparation, molecular-level protection, sensitive response to bio-stimuli, traceless release, and adaptability to different drugs. Limitations of the approach and opportunities for future growth are also detailed.The intriguing coupling phenomena among spin, phonon, and charge degrees of freedom in materials having magnetic, ferroelectric and/or ferroelastic order have been of research interest for the fundamental understanding and technological relevance. We report a detailed study on structure and phonons of Al0.5Ga0.5FeO3 (ALGF), a lead-free magnetoelectric material, carried out using variable temperature dependent powder neutron diffraction and Raman spectroscopy. Neutron diffraction studies suggest that Al3+ ions are distributed in one tetrahedrally (BO4) and three octahedrally (BO6) coordinated sites of the orthorhombic (Pc21n) structure and there is no structural transition in the temperature range of 7-800 K. Temperature dependent field-cooled and zero-field-cooled magnetization studies indicate ferrimagnetic ordering below 225 K (TN), and that is reflected in the low temperature powder neutron diffraction data. An antiferromagnetic type arrangement of Fe3+ ions with net magnetic moment of 0.13 μB/Fe3+ was observed from powder neutron diffraction analysis and it corroborates the findings from magnetization studies. At the magnetic transition temperature, no drastic change in lattice strain was observed, while significant changes in phonons were observed in the Raman spectra. The deviation of several mode frequencies from the standard anharmonicity model in the ferrimagnetic phase (below 240 K) is attributed to coupling effect between spin and phonon. Spin-phonon coupling effect is discernable from Raman bands located at 270, 425, 582, 695, 738, and 841 cm-1. Their coupling strengths (λ) have been estimated using our phonon spectra and magnetization results. BOn (n = 4, 6) libration (restricted rotation) mode at 270 cm-1 has the largest coupling constant (λ ∼ 2.3), while the stretching vibrations located at 695 and 738 cm-1 have the lowest coupling constant (λ ∼ 0.5). In addition to the libration mode, several internal stretching and bending modes of polyhedral units are strongly affected by spin ordering.