Mortondemir7815

Z Iurium Wiki

Ultimately, spatially and temporally varying salinity regimes levels affected distribution of CCA in the nearshore Arctic. These results have implications for epilithic benthic community structure in subtidal areas near freshwater sources and highlight the importance of salinity in CCA physiology.Apricot (Prunus armeniaca L.) is a valuable worldwide agronomical crop, with a delicious fruit highlighted as a functional food with both nutritional and bioactive properties, remarkably beneficial to human health. Apricot fruit ripening is a coordinated developmental process which requires change in the expression of hundreds to thousands of genes to modify many biochemical and physiological processes arising from quality characteristics in ripe fruit. In addition, enhancing fruit and nutraceutical quality is one of the central objectives to be improved in the new varieties developed by breeding programs. In this study we analyzed the contents of main metabolites linked to the nutraceutical value of apricot fruits, together with the most important pomological characteristics and biochemical contents of fruit during the ripening process in two contrasted apricot genotypes. Additionally, the gene expression changes were analyzed using RNA-Seq and real time qPCR. Results showed that genes with differential expression in the biosynthetic pathways, such as phenylpropanoids, flavonoids, starch and sucrose and carotenoid metabolism, could be possible candidates as molecular markers of fruit quality characteristics for fruit color and soluble solid content. The gene involves in carotenoid metabolism carotenoid cleavage dioxygenase 4, and the gene sucrose synthase in starch and sucrose metabolism were identified as candidate genes in the ripening process for white skin ground color and flesh color and high soluble sugar content. The application of these candidate genes on marker-assisted selection in apricot breeding programs may contribute to the early selection of high-quality fruit genotypes with suitable nutraceutical values.[This corrects the article DOI 10.3389/fpls.2020.00809.].Effect of diurnal temperature amplitude on carbon tradeoff (photosynthesis vs. respiration) and growth are not well documented in C4 crops, especially under changing temperatures of light (daytime) and dark (nighttime) phases in 24 h of a day. Fluctuations in daytime and nighttime temperatures due to climate change narrows diurnal temperature amplitude which can alter circadian rhythms in plant, thus influence the ability of plants to cope with temperature changes and cause contradictory responses in carbon tradeoff, particularly in night respiration during dark phase, and growth. Sorghum [Sorghum bicolor (L.) Moench] is a key C4 cereal crop grown in high temperature challenging agro-climatic regions. Hence, it is important to understand its response to diurnal temperature amplitude. This is the first systematic investigation using controlled environmental facility to monitor the response of sorghum to different diurnal temperature amplitudes with same mean temperature. Two sorghum hybrids (DK 53 and DK 28E) gardless of hybrid variation. Hence, diurnal temperature amplitude and night respiration should be considered while quantifying response and screening for high temperature tolerance in sorghum genotypes and comprehensive understanding of dark phase mechanisms which are coupled with stress response can further strengthen screening procedures.Coarse root systems provide a framework for water and nutrient absorption from the soil and play an important role in plant survival in harsh environments. However, the adaptions of plant roots in soil-limited environments with low water storage capacity and nutrient content needs to be better understood. The adaptation strategies of two common plant species (a deciduous tree Platycarya longipes and an evergreen shrub Tirpitzia ovoidea) from two contrasting habitats (a shallow rocky soil and a nearby deep soil) in a karst region of subtropical China were compared and analyzed. Foliar nutrient concentrations, stoichiometry, stable carbon, and oxygen isotopes were used to determine plant nutrient and water use status across these two habitats. Six indexes, including maximum root depth, maximum root radial extent, number of major roots and secondary roots, and tapering rate and curvature, were all investigated to characterize coarse root systems. Results show that both species exhibited similar nutrient and water use status in the two habitats that had contrasting water holding capacity and available nutrient content. On the other hand, although maximum root depths of the individual plants were not deeper than 33 cm, maximum radial extents were much larger when compared to rooting depths. Specifically, the ratio of radial extent to depth in the soil-limited habitat was approximately 6 and 1.5 times higher than that in the deep-soil habitat for the tree and shrub, respectively. Additionally, especially for the tree, a larger root radial extent was further accompanied by lower root tapering rate and bending levels. Our results provided evidence that plants growing in soil-limited environments maintain a stable resource use status along with large radially extended coarse root systems in humid karst regions like southwest China.Glycerol, a compatible solute, has previously been found to act as an osmoprotectant in some marine Chlamydomonas species and several species of Dunaliella from hypersaline ponds. Recently, Chlamydomonas reinhardtii and Dunaliella salina were shown to make glycerol with an unusual bidomain enzyme, which appears to be unique to algae, that contains a phosphoserine phosphatase and glycerol-3-phosphate dehydrogenase. Here we report that two psychrophilic species of Chlamydomonas (C. spp. UWO241 and ICE-MDV) from Lake Bonney, Antarctica also produce high levels of glycerol to survive in the lake's saline waters. Glycerol concentration increased linearly with salinity and at 1.3 M NaCl, exceeded 400 mM in C. sp. UWO241, the more salt-tolerant strain. We also show that both species expressed several isoforms of the bidomain enzyme. An analysis of one of the isoforms of C. sp. UWO241 showed that it was strongly upregulated by NaCl and is thus the likely source of glycerol. These results reveal another adaptation of the Lake Bonney Chlamydomonas species that allow them to survive in an extreme polar environment.Development of live imaging techniques for providing information how chromatin is organized in living cells is pivotal to decipher the regulation of biological processes. Here, we demonstrate the improvement of a live imaging technique based on CRISPR/Cas9. In this approach, the sgRNA scaffold is fused to RNA aptamers including MS2 and PP7. When the dead Cas9 (dCas9) is co-expressed with chimeric sgRNA, the fluorescent coat protein-tagged for MS2 and PP7 aptamers (tdMCP-FP and tdPCP-FP) are recruited to the targeted sequence. Compared to previous work with dCas9GFP, we show that the quality of telomere labeling was improved in transiently transformed Nicotiana benthamiana using aptamer-based CRISPR-imaging constructs. Labeling is influenced by the copy number of aptamers and less by the promoter types. The same constructs were not applicable for labeling of repeats in stably transformed plants and roots. The constant interaction of the RNP complex with its target DNA might interfere with cellular processes.Colorado potato beetle (CPB) is an agricultural pest of solanaceous crops, notorious for its rapid resistance development to chemical pesticides. Foliar spraying of dsRNA formulations is a promising innovative technology providing highly specific and environmentally acceptable option for CPB management. We designed dsRNA to silence CPB mesh gene (dsMESH) and performed laboratory feeding trials to assess impacts on beetle survival and development. We compared the effectiveness of in vivo and in vitro produced dsRNA in a series of laboratory experiments. We additionally performed a field trial in which the efficacy of dsRNA sprayed onto potato foliage was compared to a spinosad-based insecticide. We showed that dsMESH ingestion consistently and significantly impaired larval growth and decreased larval survival in laboratory feeding experiments. In vivo produced dsRNA performed similarly as in vitro synthesized dsRNA in laboratory settings. In the field trial, dsMESH was as effective in controlling CPB larvae as a commercial spinosad insecticide, its activity was however slower. We discuss limitations and benefits of a potential dsMESH-based CPB management strategy and list some important RNAi based CPB research topics, which will have to be addressed in future.The sexual expression of watermelon plants is the result of the distribution and occurrence of male, female, bisexual and hermaphrodite flowers on the main and secondary stems. Plants can be monoecious (producing male and female flowers), andromonoecious (producing male and hermaphrodite flowers), or partially andromonoecious (producing male, female, bisexual, and hermaphrodite flowers) within the same plant. Sex determination of individual floral buds and the distribution of the different flower types on the plant, are both controlled by ethylene. Phenformin A single missense mutation in the ethylene biosynthesis gene CitACS4, is able to promote the conversion of female into hermaphrodite flowers, and therefore of monoecy (genotype MM) into partial andromonoecy (genotype Mm) or andromonoecy (genotype mm). We phenotyped and genotyped, for the M/m locus, a panel of 207 C. lanatus accessions, including five inbreds and hybrids, and found several accessions that were repeatedly phenotyped as PA (partially andromonoecious) umber of candidate genes were selected, not only for their function in ethylene biosynthesis and signalling as well as their role in flower development and sex determination, but also by the impact of the SNPs and indels differentially detected in the two sequenced bulks.Salinity affects around 20% of all arable land while an even larger area suffers from recurrent drought. Together these stresses suppress global crop production by as much as 50% and their impacts are predicted to be exacerbated by climate change. Infrastructure and management practices can mitigate these detrimental impacts, but are costly. Crop breeding for improved tolerance has had some success but is progressing slowly and is not keeping pace with climate change. In contrast, Silicon (Si) is known to improve plant tolerance to a range of stresses and could provide a sustainable, rapid and cost-effective mitigation method. The exact mechanisms are still under debate but it appears Si can relieve salt stress via accumulation in the root apoplast where it reduces "bypass flow of ions to the shoot. Si-dependent drought relief has been linked to lowered root hydraulic conductance and reduction of water loss through transpiration. However, many alternative mechanisms may play a role such as altered gene expresnd oxidative stress all improve when Si is present during plant exposure to salinity and drought. We further conclude that most of these changes can be explained by apoplastic roles of Si while there is as yet little evidence to support biochemical roles of this element.

Autoři článku: Mortondemir7815 (Putnam Galbraith)