Mortensengreenwood0790

Z Iurium Wiki

Impulsive transient absorption spectroscopy is used to track the formation and evolution of vibrational coherences in cresyl violet perchlorate under different excitation conditions. Resonant and off-resonant pump pulses result in the selective formation of excited (S1)- and ground (S0)-state wavepackets. Partially resonant and broadband excitation conditions lead to the simultaneous formation of wavepackets in the ground and excited states. find more are characterized by the phase-flips in the coherent signal associated with wavepacket motion across the absorption and emission maxima and by a red shift of 2-10 cm-1 in the Raman features of the excited state compared to the ground-state wavepacket. We observe that, when wavepackets are simultaneously excited on the ground- and excited-state surfaces, interference on a picosecond timescale between coherent oscillations in the two wavepackets gives rise to features that cannot be attributed to the passage of a wavepacket through a conical intersection, such as shifting phase-flips and zero-amplitude nodes. Wavepacket filtering using windowed Fourier transforms highlights these interference effects and demonstrates that special care must be taken in order to properly interpret data that have been processed in this manner.We model a molecular device as a molecule attached to a set of leads treated at the tight-binding level, with the central molecule described to any desired level of electronic structure theory. Within this model, in the absence of electron-phonon interactions, the Landauer-Büttiker part of the Meir-Wingreen formula is shown to be sufficient to describe the transmission factor of the correlated device. The key to this demonstration is to ensure that the correlation self-energy has the same functional form as the exact correlation self-energy. This form implies that nonsymmetric contributions to the Meir-Wingreen formula vanish, and hence, conservation of current is achieved without the need for Green's Function self-consistency. An extension of the Source-Sink-Potential (SSP) approach gives a computational route to the calculation and interpretation of electron transmission in correlated systems. In this picture, current passes through internal molecular channels via resonance states with complex-valued energies. Each resonance state arises from one of the states in the Lehmann expansion of the one-electron Green's function, hole conduction derived from ionized states, and particle conduction from attached states. In the correlated device, the dependence of transmission on electron energy is determined by four structural polynomials, as it was in the tight-binding (Hückel) version of the SSP method. Hence, there are active and inert conduction channels (in the correlated case, linked to Dyson orbitals) governed by a set of selection rules that map smoothly onto the simplest picture.Polyoxometalates (POMs) have been proposed as electromaterials for lithium-based batteries because they provide access to multiple electron transfer reactions coupled to fast lithium ion transport processes and high stability over many redox cycles. Consequently, knowledge of reversible potentials and Li+ cation-POM anion interactions provides a strategic basis for their further development. In this study, detailed cyclic voltammetric studies of a series of [XVVM11O40]n- (XVM11n-) POMs (where X (heteroatom) = P (n = 4), As (n = 4), and S (n = 3) and M (addenda atom) = Mo, W) have been undertaken in CH3CN in the presence of LiClO4, with n-Bu4NPF6 also present when required to keep the ionic strength close to constant value of 0.1 M. An analysis of the data has allowed the impact of the POM charge, and addenda and hetero atoms on the reversible potentials and the interaction between Li+ and the oxidized XVVM11n- and reduced XVIVM11(n+1)- forms of the VV/IV redox couple to be determined. The SVV/IVM113-/4- proceer impact of Li+ on the WVI/V- and MoVI/V-based reductions that occur at more negative potentials than the VV/IV process also has been qualitatively evaluated.Developing O2-selective adsorbents that can produce high-purity oxygen from air remains a significant challenge. Here, we show that chemically reduced metal-organic framework materials of the type A x Fe2(bdp)3 (A = Na+, K+; bdp2- = 1,4-benzenedipyrazolate; 0 less then x ≤ 2), which feature coordinatively saturated iron centers, are capable of strong and selective adsorption of O2 over N2 at ambient (25 °C) or even elevated (200 °C) temperature. A combination of gas adsorption analysis, single-crystal X-ray diffraction, magnetic susceptibility measurements, and a range of spectroscopic methods, including 23Na solid-state NMR, Mössbauer, and X-ray photoelectron spectroscopies, are employed as probes of O2 uptake. Significantly, the results support a selective adsorption mechanism involving outer-sphere electron transfer from the framework to form superoxide species, which are subsequently stabilized by intercalated alkali metal cations that reside in the one-dimensional triangular pores of the structure. We further demonstrate O2 uptake behavior similar to that of A x Fe2(bdp)3 in an expanded-pore framework analogue and thereby gain additional insight into the O2 adsorption mechanism. The chemical reduction of a robust metal-organic framework to render it capable of binding O2 through such an outer-sphere electron transfer mechanism represents a promising and underexplored strategy for the design of next-generation O2 adsorbents.Vacancy diffusion is fundamental to materials science. Hydrogen atoms bind strongly to vacancies and are often believed to retard vacancy diffusion. #link# Here, we use a potential-of-mean-force method to study the diffusion of vacancies in Cu and Pd. We find H atoms, instead of dragging, enhance the diffusivity of vacancies due to a positive hydrogen Gibbs excess at the saddle-point that is, the migration saddle attracts more H than the vacancy ground state, characterized by an activation excess ΓHm ≈ 1 H, together with also-positive migration activation volume Ωm and activation entropy Sm. Thus, according to the Gibbs adsorption isotherm generalized to the activation path, a higher μH significantly lowers the migration free-energy barrier. This is verified by ab initio grand canonical Monte Carlo simulations and direct molecular dynamics simulations. This trend is believed to be generic for migrating dislocations, grain boundaries, and so on that also have a higher capacity for attracting H atoms due to a positive activation volume at the migration saddles.The hydroheteroarylation of allylbenzene with pyridine as catalyzed by Ni/AlMe3 and a N-heterocyclic carbene ligand has recently been established. Density functional calculations revealed that the common stepwise pathway, which involves the C-H oxidative addition of pyridine-AlMe3 before the migratory insertion of allylbenzene, is unlikely as the migratory insertion needs to overcome a prohibitively high energy barrier. In contrast, the ligand-to-ligand hydrogen transfer pathway is more favorable in which the hydrogen is transferred directly from the para-position of pyridine-AlMe3 to C2 of allylbenzene. Our distortion-interaction analysis and natural bond orbital analysis indicate that the interaction energy is strongly correlated with the extent of the charge transfer from the alkene (hydrogen acceptor) to the pyridine-AlMe3 (hydrogen donor), which dictates the selectivity of the H-transfer to the C2 position of allylbenzene. Then, the subsequent C-C reductive elimination of the regioselective linear product is facilitated by the steric hindrance of the IPr ligand. Understanding these key factors affecting the product regioselectivity is important to the development of catalysts for hydroheteroarylation of alkenes.This study reports a simple, reusable, and recoverable niobium-based heterogeneous catalysts for Biginelli multicomponent reactions. Different methods of catalysts preparation were investigated. For this purpose, HY-340 (Nb2O5·nH2O) and Nb2O5 were chemically and/or thermally treated and investigated as catalysts for dihydropyrimidinones (DHPMs) production. The catalysts were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, temperature-programmed desorption of NH3, adsorption/desorption of N2 at -196 °C, and thermogravimetric and differential thermal analysis. The characterization results showed that niobium oxides have the potential to be used as catalysts because of high crystallinity and large surface area. Among the tested catalysts, Nb2O5 chemically treated (Nb2O5/T) showed the best catalytic performance. In the absence of solvents, 94% yield of DHPMs was achieved. Also, Nb2O5/T can be reused three times without a significant yield decrease. link2 Additionally, a feasible reaction pathway was suggested based on the Knoevenagel mechanism for DHPM synthesis using niobium-based catalysts.Remote C-H functionalization at C5 is the most sparingly observed selectivity in the functionalization of indole templates. Herein, we reported that the combination of a AgSbF6 catalyst and phenyliodine diacetate oxidation enabled the C-H selenylation at the C5 position of indole scaffolds in a selective version, thus leading to the formation of a wide scope of 5-selenylated indole derivatives, which are otherwise difficult to prepare. Mechanistic studies indicated that current transformation follows a radical process, and the tethered C3 pivaloyl group on indole scaffolds plays roles in both blocking the active C3 position and manipulating the electronic affinity of the arenes.Quinolino[7,8-h]quinoline is a superbasic compound, with a pKaH in acetonitrile greater than that of 1,8-bis(dimethylaminonaphthalene) (DMAN), although its synthesis and the synthesis of its derivatives can be problematic. The use of halogen derivatives 4,9-dichloroquinolino[7,8-h]quinoline (16) and 4,9-dibromoquinolino[7,8-h]quinoline (17) as precursors has granted the formation of a range of substituted quinolinoquinolines. The basicity and other properties of quinolinoquinolines can be modified by the inclusion of suitable functionalities. The experimentally obtained pKaH values of quinolino[7,8-h]quinoline derivatives show that N4,N4,N9,N9-tetraethylquinolino[7,8-h]quinoline-4,9-diamine (26) is more superbasic than quinolino[7,8-h]quinoline. Computationally derived pKaH values of quinolinoquinolines functionalized with dimethylamino (NMe2), 1,1,3,3-tetramethylguanidino (N═C(NMe2)2) or N,N,N',N',N″,N″-hexamethylphosphorimidic triamido (N═P(NMe2)3) groups are significantly greater than those of quinolino[7,8-h]quinoline. Overall, electron-donating functionalities are observed to increase the basicity of the quinolinoquinoline moiety, while the substitution of electron-withdrawing groups lowers the basicity.A novel palladium-catalyzed [2 + 2 + 1] annulation of alkyne-tethered aryl iodides with diaziridinone was developed, leading to the formation of 3,4-fused tricyclic indoles. link3 From a mechanistic standpoint, the formation of fused tricyclic indole scaffolds involved C,C-palladacycles, which were synthesized through the intramolecular reaction of aryl halides and alkynes. The cascade reaction described herein could be carried out with a broad range of substrates and provided various 3,4-fused tricyclic indoles with yields up to 98%.

Autoři článku: Mortensengreenwood0790 (Justesen Key)