Moranbarton6373

Z Iurium Wiki

Background The purpose of this study was to investigate whether pretreatment anemia was an independent risk factor for survival in patients with advanced non-small cell lung cancer (NSCLC) after adjusting for other covariates. Methods We used propensity score matching (PSM) to minimize the influence of confounding factors and used χ2 (categorical variables), Student's t-test (normal distribution), or Mann-Whitney U test (skewed distribution) to analyze the differences among the Hb groups. Cox regression and Kaplan-Meier analyses were used to assess the association between anemia and survival. P values less then 0.05 (two-sided) were considered statistically significant. Results The average age of the 758 selected participants was 58.2±11 years, and 210 patients (27.7%) had anemia. In the multivariate analysis, anemia was associated with a poor prognosis in the unmatched cohort (Hazards ratio (HR)=1.3, 95% (confidence interval (CI) 1.1-1.6; p= 0.008), and the matched cohort (HR=1.7, 95% CI 1.3-2.3; p less then 0.001), emerging as an independent risk and prognostic factor in advanced NSCLC patients. In the Kaplan-Meier curve, the average survival time of anemic and non-anemic patients was 9.3 months (95% CI 7.9-11.4 months) vs. 14.1 months (95% CI 12-16.3 months) (p=0.0073) in the unmatched cohort. After propensity score matching, the average survival time of anemic and non-anemic patients was 10.9 months (95% CI 8.8-12.9. months) vs. 17.8 months (95% CI 16.0-23.3 months) (p less then 0.001). Conclusion Pretreatment anemia was an independent risk and prognostic factor for survival in patients with advanced NSCLC. Large-scale studies are required to confirm our findings.Objective To investigate the expression of hsa_circ_0074298 (circular RNA) and the molecular mechanism that promotes tumor growth and enhances the chemoresistance of pancreatic cancer. Methods Real-time reverse transcription-PCR was used to detect hsa_circ_0074298 expression in pancreatic cancer. The intracellular localization of hsa_circ_0074298 was determined by RNA in situ hybridization. The CCK8 method, colony formation assay, Transwell assay, and flow cytometry were used to evaluate the effects of hsa_circ_0074298 on the proliferation, migration, invasion, cell cycle, apoptosis of pancreatic cancer cells. Bioinformatics analysis and dual luciferase assays were employed to detect the association of hsa_circ_0074298 and miR-519d and the binding of miR-519d to the target gene SMOC2. A subcutaneous xenograft model was established to observe the effect of hsa_circ_0074298 in vivo. Results The hsa_circ_0074298 was mainly localized in the cytoplasm. Hsa_circ_0074298 was highly expressed in pancreatic cancer tissues and cell lines. The expression of hsa_circ_0074298 was significantly correlated with pancreatic cancer tumor size, lymph node metastasis, and pathological grade. hsa_circ_0074298 could sponge miR-519, and miR-519d bound to SMOC2. Downregulation of hsa_circ_0074298 expression significantly inhibited cell proliferation, migration, invasion, colony forming ability and promoted cell cycle arrest, apoptosis and chemo-resistance of pancreatic cancer in vitro and vivo. However, the effects could be reversed by a miR-519d inhibitor or SMOC2 overexpression. Conclusion By sponging miR-519 and targeting SMOC2, hsa_circ_0074298 promotes the growth and metastasis of pancreatic cancer and increases the resistance of pancreatic cancer cells to gemcitabine.Colorectal cancer (CRC) is one of the most common tumors in the digestive system, and it is urgent to identify a new biomarker for the diagnosis and treatment of CRC. N6-methyladenosine (m6A) is an abundant mRNA modification and is almost involved in every aspect of physiological processes. In this study, we constructed a novel m6A-related 2-lncRNAs signature that can predict the prognosis of CRC. We obtained m6A-related lncRNAs and identified prognostic lncRNAs through univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis, then constructed a prognostic model based on the risk score, and we also verified the stability of the model. Erastin In addition, differential expression analysis between the high- and low-risk subgroups was performed. A total of 1,894 m6A-related lncRNAs were screened from various sources. Using univariate Cox regression analysis and survival analysis, two lncRNAs (AL135999.1 and AL049840.4) were identified (P less then 0.05), and the coefficients of lncRNAs were calculated by LASSO. The high-risk group had worse clinical outcomes and overall survival (OS) than the low-risk group, and the risk score can serve as an independent prognostic factor in CRC. In addition, different stages of CRC also showed a different level of risk score. Finally, we found that two lncRNAs were differentially expressed (P less then 0.01) in CRC patients, and AL135999.1 may be relevant to m6A modification mediated by methyltransferase-like 3 (METTL3) in CRC. In summary, we constructed a reliable 2-lncRNAs signature based on the risk score, and we identified two m6A-related prognostic lncRNAs, AL135999.1 and AL049840.4. The novel 2-lncRNAs signature plays an essential role in predicting the prognosis of CRC.Background There is strong evidence that apatinib is effective in the treatment of third- or later-line advanced metastatic gastric cancer (mGC). Hematology prediction index is a convenient and cheap method to predict the prognosis of disease. link2 However, the prognosis of baseline hematological parameters of peripheral blood, such as neutrophil-to-lymphocyte ratio (NLR), carbohydrate antigen 125 (CA125) and albumin (ALB) on mGC treated with apatinib have not been identified. Methods We retrospectively analyzed mGC received apatinib between 1 January 2014 and 30 June 2021. Survival analyses were performed using the Kaplan-Meier method and Cox-proportional hazards model. Results A total of 117 patients were included in this study. The cutoff value of NLR, CA125 and ALB was 2.25, 19.24 U/ml and 37.60 g/L, respectively. The disease control rates (DCR) in the high and low NLR groups were 52.94% and 73.47% (P=0.024); 48.28% and 74.58% (P=0.003) in high and low CA125 groups; 72.97% and 41.86% (P=0.001) in high and low ALB groups. By survival analysis, increasing NLR (P=0.003), CA125 (P less then 0.001) and decreasing ALB (P less then 0.001) predicted a shorter PFS after apatinib. NLR (P=0.015), CA125 (P=0.004) and ALB (P=0.005) were significantly predictors for PFS in mGC treated with aptinib. link3 Conclusion Increasing NLR, CA125 and decreasing ALB were associated with poorer clinical efficiency and prognosis after apatinib treatment.Objective Our previous study showed that glioma stem-like cells could be induced to undergo dedifferentiation under hypoxic conditions, but the mechanism requires further study. HIF1α and HIF2α are the main molecules involved in the response to hypoxia, and Sox2, as a retroelement, plays an important role in the formation of induced pluripotent stem cells, especially in hypoxic microenvironments. Therefore, we performed a series of experiments to verify whether HIF1α, HIF2α and Sox2 regulated glioma cell dedifferentiation under hypoxic conditions. Materials and methods Sphere formation by single glioma cells was observed, and CD133 and CD15 expression was compared between the normoxic and hypoxic groups. HIF1α, HIF2α, and Sox2 expression was detected using the CGGA database, and the correlation among HIF1α, HIF2α and Sox2 levels was analyzed. We knocked out HIF1α, HIF2α and Sox2 in glioma cells and cultured them under hypoxic conditions to detect CD133 and CD15 expression. The above cells were implanted into ockout cells. Conclusion In a hypoxic microenvironment, the HIF1α/HIF2α-Sox2 network induced the formation of glioma stem cells through the dedifferentiation of differentiated glioma cells, thus promoting glioma cell chemoresistance. This study demonstrates that both HIF1α and HIF2α, as genes upstream of Sox2, regulate the malignant progression of glioma through dedifferentiation.Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on an application for a detoxification process of groundnut press cake for aflatoxins by ammoniation. Specifically, it is required that the feed decontamination process is compliant with the acceptability criteria specified in the Commission Regulation (EU) 2015/786 of 19 May 2015. The CONTAM Panel assessed the data provided by the feed business operator with respect to the efficacy of the process to remove the contaminant from groundnut press cake batches and on information demonstrating that the process does not adversely affect the characteristics and the nature of the product. Although according to the literature the process may be able to reduce aflatoxin levels below the legal limits, the Panel concluded that the proposed decontamination process, on the basis of the experimental data submitted by the feed business operator, cannot be confirmed for compliance with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015. The Panel recommended sufficient sample testing before and after the process, under the selected conditions, to ensure that the process is reproducible and reliable and to demonstrate that the detoxification is not reversible. In addition, genotoxicity testing of extracts of the treated feedingstuff and of the identified degradation products would be necessary. Finally, information on the transfer rate of AFB1 to AFM1 excretion in milk for animals fed the ammoniated product, in comparison to the starting material and on the ammoniation process changes of the nutritional values of the feed material should be provided.This guidance document provides harmonised and flexible methodologies to apply scientific criteria and prioritisation methods for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. In the context of EFSA's risk assessments, the problem formulation step defines the chemicals to be assessed in the terms of reference usually through regulatory criteria often set by risk managers based on legislative requirements. Scientific criteria such as hazard-driven criteria can be used to group these chemicals into assessment groups. In this guidance document, a framework is proposed to apply hazard-driven criteria for grouping of chemicals into assessment groups using mechanistic information on toxicity as the gold standard where available (i.e. common mode of action or adverse outcome pathway) through a structured weight of evidence approach. However, when such mechanistic data are not available, grouping may be performed using a common adverse outcome. Toxicokinetic data can also be useful for grouping, particularly when metabolism information is available for a class of compounds and common toxicologically relevant metabolites are shared. In addition, prioritisation methods provide means to identify low-priority chemicals and reduce the number of chemicals in an assessment group. Prioritisation methods include combined risk-based approaches, risk-based approaches for single chemicals and exposure-driven approaches. Case studies have been provided to illustrate the practical application of hazard-driven criteria and the use of prioritisation methods for grouping of chemicals in assessment groups. Recommendations for future work are discussed.

Autoři článku: Moranbarton6373 (Kirby Wall)