Moodyconnolly5673
Lipid nanocapsules are treasured nanoparticulate systems, although they lack detectability in biological environments. To overcome this, we designed LNCs loaded simultaneously with fluorescent dye and superparamagnetic iron oxide nanoparticles (Dual LNCs). The introduction of both labels did not alter nanoparticle characteristics such as size (50 nm), size distribution (polydispersity index less then 0.1) or surface modifications, including the effectiveness of targeting ligands. Furthermore, the colloidal stability, particle integrity and biocompatibility of the nanoparticles were not negatively affected by label incorporation. These Dual LNCs are concomitantly visualizable via fluorescence and transmitted light imaging after either the internalization by cells or systemic administration to mice. Importantly, they are detectable in liver sections of mice using transmission electron microscopy without additional enhancement. The iron content of 0.24% (m/m) is sufficiently high for precise quantification of nanoparticle concentrations via inductively coupled plasma optical emission spectroscopy. Dual LNCs are precious tools for the investigation of in vitro and in vivo performances of lipid nanocapsule formulations, since they allow for the use of complementary imaging methods for broad range detectability.Real time visualization and tracking of colloidal particles with 3D resolution is essential for probing the local structure and dynamics in complex fluids. Although tracking translational motion of spherical particles is well-known, accessing rotational dynamics of such particles remains a great challenge. Here, we report a novel approach of using fluorescently labeled raspberry-like colloids with an optical anisotropy to concurrently track translational and rotational dynamics in 3 dimensions. The raspberry-like particles are coated by a silica layer of adjustable thickness, which allows tuning the surface roughness. The synthesis and applicability of the proposed method is demonstrated by two types of probes rough and smoothened. The accuracies of measuring Mean Squared (Angular) Displacements are also demonstrated by using these 2 probes dispersed in 2 different solvents. The presented 3D trackable colloids offer a high potential for wide range of applications and studies, such as probing the dynamics of crystallization, phase transitions, biological interactions and the effect of surface roughness on diffusion.Zeolitic imidazole frameworks (ZIF) and ultrathin layered double hydroxide nanosheets (LDHNS) have drawn growing attention in the electrocatalysis field. Combining the merits and maximizing the electrocatalytic activity of each building block in the corresponding composite is imperative but challenging. This work thus proposes a simple strategy for the in situ growth of ZIF-67 on ultrathin CoAl-LDHNS (LDHNS@ZIF-67) without an additional Co2+ source. Thanks to the ultrathin nature, CoAl-LDHNS provide more Co reactive sites for the ordered growth of ZIF-67 nanocrystals on this 2D matrix via coordination interactions between Co2+ and 2-methylimidazole. The obtained LDHNS@ZIF-67 provides more convenient pathways to rapid electron transportation between the basal electrode and analytes. Hence, the modified electrode can be applied for the truly simultaneous detection of naphthol isomers by differential pulse voltammetry. α-naphthol and β-naphthol exhibit irreversible oxidation peaks at 0.327 and 0.487 V vs. saturated calomel electrode, respectively, making their simultaneous detection feasible. The voltammetric responses of both isomers are linear in concentrations ranging from 0.3 to 150 μM with limits of detection of 62 and 94 nM, respectively. The sensor exhibits advantages including good reproducibility, stability, selectivity, and practicability for the simultaneous detection of naphthol isomers in real water samples.The current water treatment technology is still based on low energy efficient processes due to the complex composition of wastewater. To achieve high energy efficiency, many micro-porous materials with complex functional groups have been fabricated because of their high pollutant adsorption capabilities. In this work, antibacterial β-cyclodextrin-based nanoparticles (E-β-CDN) were prepared via one-pot method to explore their adsorption performance to pollutants in wastewater. The resulting nanoparticles exhibited superfast adsorption kinetics to pollutants with removal efficiency of over 95% within 10 s. learn more The nanoparticles also presented broad-spectrum adsorption to organic pollutants and heavy metal ions, and their maximum adsorption capacity was 3289.6 mg g-1 towards methyl orange (MO) and 970.8 mg g-1 towards Pb(II), much higher than that of many other adsorbents. Easy cyclic adsorption-desorption was another distinguishing feature of the nanoparticles, whose removal efficiency to these pollutants hardly varied after 10 cycles of regeneration. Interestingly, the resulting nanoparticles showed prominent antibacterial activity of 99.99% bacterial inhibitive rate against both gram-negative bacteria Escherichia coli (E. coli) and gram-positive bacteria Staphylococcus aureus (S. aureus). These results suggest that the resulting nanoparticles have great potential in the purification of the wastewater.Background and aims Practices dramatically reduced endoscopy services due to the COVID-19 pandemic. As practices are now considering reintroduction of elective endoscopy, we conducted a survey of North American practices to identify reactivation barriers and strategies. Methods We designed and electronically distributed a web-based survey to North American gastroenterologists consisting of seven domains institutional demographics, impact of COVID-19 on endoscopy practice, elective endoscopy resumption plans, anesthesia modifications, personal protective equipment (PPE) policies, fellowship training and telemedicine use. Responses were stratified by practice type ambulatory surgery center (ASC) or hospital-based. Results In total, 123 practices (55% ASC-based and 45% hospital-based) responded. At the pandemic's peak (as reported by the respondent), practices saw a 90% drop in endoscopy volume with most centers planning to resume elective endoscopy a median of 55 days after initial restrictions. Declining community prevalence of COVID-19, PPE availability, and pre-procedure SARS-CoV-2 testing availability were ranked as the three primary factors influencing reactivation timing.