Montgomerybuhl2663

Z Iurium Wiki

The sonocatalytic action that forms electron-hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light.We reveal limitations of several standard coupled-cluster (CC) methods with perturbation-theory based noniterative or approximate iterative treatments of triple excitations when applied to the determination of highly accurate potential energy curves (PECs) of ionic dimers, such as the XΣg+2 electronic ground state of Rb2 +. Such computations are of current interest for the understanding of ion-atom interactions in the ultracold regime. We demonstrate that these CC methods lead to an unphysical long-range barrier for the Rb2 + system. The barrier is small but spoils the long-range behavior of the PEC. The effect is also found for other X2 + systems, such as X = Li, Na, and K. Calculations using a flexible framework for obtaining leading perturbative triples corrections derived using an analytic CC singles and doubles energy derivative formulation demonstrate that the origin of this problem lies in the use of T̂3 amplitudes obtained from approximate CC singles, doubles, and triples amplitude equations. It is shown that the unphysical barrier is related to a symmetry instability of the underlying Hartree-Fock mean-field solution, leading to orbitals representing two +0.5-fold charged ions in the limit of separated fragments. This, in turn, leads to a wrong 1/R asymptote of the interaction potential computed by perturbation-based CC approximations. Physically meaningful perturbative corrections in the long-range tail of the PEC may instead be obtained using symmetry-broken reference determinants.We study the initial stages of homogeneous melting of a hexagonal ice crystal at coexistence and at moderate superheating. Our trajectory-based computer simulation approach provides a comprehensive picture of the events that lead to melting, from the initial accumulation of 5+7 defects, via the formation of L-D and interstitial-vacancy pairs, to the formation of a liquid nucleus. Of the different types of defects that we observe to be involved in melting, a particular kind of 5+7 type defect (type 5) plays a prominent role as it often forms prior to the formation of the initial liquid nucleus and close to the site where the nucleus forms. Hence, like other solids, ice homogeneously melts via the prior accumulation of defects.We demonstrate experimentally a method of all-optical selective rotational control in gas mixtures. Using an optical centrifuge-an intense laser pulse whose linear polarization rotates at an accelerated rate, we simultaneously excite two different molecular species to two different rotational frequencies of choice. The new level of control is achieved by shaping the centrifuge spectrum according to the rotational spectra of the centrifuged molecules. The shaped optical centrifuge releases one molecular species earlier than the other, therefore separating their target rotational frequencies and corresponding rotational states. The technique is applicable to molecules with non-overlapping rotational spectra in the frequency range of interest and will expand the utility of rotational control in the studies of the effects of molecular rotation on collisions and chemical reactions.Observations of the torsional and low-lying vibrational-torsional states of toluene, p-fluorotoluene, and m-fluorotoluene using the technique of two dimensional laser induced fluorescence (2D-LIF) have revealed interactions between the methyl torsion and low frequency out-of-plane methyl wagging vibration. These interactions can change the values of constants extracted from the analysis of rotational spectra, which usually assume that the large amplitude torsional motion can be treated independent of the small amplitude vibrations. Since out-of-plane methyl wagging modes will be present whenever a methyl group is attached to a planar frame, this type of torsion-vibration interaction is potentially widespread; it is thus important to establish the extent and strength of this type of interaction. 2D-LIF is limited to molecules that fluoresce from excited electronic states, and to explore interactions between torsion and methyl wagging vibrations in a wide range of molecules necessitates developing alternative experimental approaches. Infrared absorption spectroscopy is one such approach. It is shown that for the low torsional barrier case, the torsional sequence bands accompanying the out-of-plane methyl wagging transition provide a sensitive probe of the interaction. As an illustration, the far infrared absorption spectrum of toluene in the region of the M20 band (∼205 cm-1) is presented and analyzed. The torsional sequence structure provides insight into the higher torsional states (up to m = 7) in the ground vibrational state and M20. An analysis of these bands enables the torsion-vibration coupling and torsional constants to be extracted. A general method to analyze such spectra is presented.We derive distance-dependent estimators for two-center and three-center electron repulsion integrals over a short-range Coulomb potential, erfc(ωr12)/r12. These estimators are much tighter than the ones based on the Schwarz inequality and can be viewed as a complement to the distance-dependent estimators for four-center short-range Coulomb integrals and for two-center and three-center full Coulomb integrals previously reported. Because the short-range Coulomb potential is commonly used in solid-state calculations, including those with the Heyd-Scuseria-Ernzerhof functional and with our recently introduced range-separated periodic Gaussian density fitting, we test our estimators on a diverse set of periodic systems using a wide range of the range-separation parameter ω. These tests demonstrate the robust tightness of our estimators, which are then used with integral screening to calculate periodic three-center short-range Coulomb integrals with linear scaling in system size.In this paper, we report how graph theory can be used to analyze an ensemble of independent molecular trajectories, which can react during the simulation time-length, and obtain structural and kinetic information. This method is totally general and here is applied to the prototypical case of gas phase fragmentation of protonated cyclo-di-glycine. This methodology allows us to analyze the whole set of trajectories in an automatic computer-based way without the need of visual inspection but by getting all the needed information. In particular, we not only determine the appearance of different products and intermediates but also characterize the corresponding kinetics. The use of colored graph and canonical labeling allows for the correct characterization of the chemical species involved. In the present case, the simulations consist of an ensemble of unimolecular fragmentation trajectories at constant energy such that from the rate constants at different energies, the threshold energy can also be obtained for both global and specific pathways. This approach allows for the characterization of ion-molecule complexes, likely through a roaming mechanism, by properly taking into account the elusive nature of such species. Finally, it is possible to directly obtain the theoretical mass spectrum of the fragmenting species if the reacting system is an ion as in the specific example.Nonadiabatic trajectory surface hopping simulations are reported for trans-C5H6NH2 +, a model of the rhodopsin chromophore, using the augmented fewest-switches algorithm. Electronic structure calculations were performed using time-dependent density functional theory (TDDFT) in both its conventional linear-response (LR) and its spin-flip (SF) formulations. In the SF-TDDFT case, spin contamination in the low-lying singlet states is removed by projecting out the lowest triplet component during iterative solution of the TDDFT eigenvalue problem. The results show that SF-TDDFT qualitatively describes the photoisomerization of trans-C5H6NH2 +, with favorable comparison to previous studies using multireference electronic structure methods. In contrast, conventional LR-TDDFT affords qualitatively different photodynamics due to an incorrect excited-state potential surface near the Franck-Condon region. In addition, the photochemistry (involving pre-twisting of the central double bond) appears to be different for SF- and LR-TDDFT, which may be a consequence of different conical intersection topographies afforded by these two methods. The present results contrast with previous surface-hopping studies suggesting that the LR-TDDFT method's incorrect topology around S1/S0 conical intersections is immaterial to the photodynamics.Incorporation of fluorescent proteins into biochemical systems has revolutionized the field of bioimaging. In a bottom-up approach, understanding the photophysics of fluorescent proteins requires detailed investigations of the light-absorbing chromophore, which can be achieved by studying the chromophore in isolation. Selleckchem Tetrazolium Red This paper reports a photodissociation action spectroscopy study on the deprotonated anion of the red Kaede fluorescent protein chromophore, demonstrating that at least three isomers-assigned to deprotomers-are generated in the gas phase. Deprotomer-selected action spectra are recorded over the S1 ← S0 band using an instrument with differential mobility spectrometry coupled with photodissociation spectroscopy. The spectrum for the principal phenoxide deprotomer spans the 480-660 nm range with a maximum response at ≈610 nm. The imidazolate deprotomer has a blue-shifted action spectrum with a maximum response at ≈545 nm. The action spectra are consistent with excited state coupled-cluster calculations of excitation wavelengths for the deprotomers. A third gas-phase species with a distinct action spectrum is tentatively assigned to an imidazole tautomer of the principal phenoxide deprotomer. This study highlights the need for isomer-selective methods when studying the photophysics of biochromophores possessing several deprotonation sites.We introduce a minimal model of solid-forming anisotropic molecules that displays, in thermal equilibrium, surface orientational order without bulk orientational order. The model reproduces the nonequilibrium behavior of recent experiments in which a bulk nonequilibrium structure grown by deposition contains regions of orientational order characteristic of the surface equilibrium. This order is deposited, in general, in a nonuniform way because of the emergence of a growth-poisoning mechanism that causes equilibrated surfaces to grow slower than non-equilibrated surfaces. We use evolutionary methods to design oscillatory protocols able to grow nonequilibrium structures with uniform order, demonstrating the potential of protocol design for the fabrication of this class of materials.BiAgX®, a mixed solder powder paste composed of a primary high-melting solder powder and an additive low-melting solder powder, exhibited a melting temperature above 260 °C and was comparable to, or even better than, the reliability of high-lead solders. The additive solder is designed to react preferentially with various surface metallizations and form a controllable intermetallic layer. Inside the joints, sub-micron AgSn particles are dispersed surrounding Bi colonies, which constrain the dislocation movement, thus enhancing strength, ductility, and associated joint reliability.

Autoři článku: Montgomerybuhl2663 (Byrne Vangsgaard)