Monroepruitt8151
46 mgg-1. The Cs adsorption mechanism was clearly described and it was assumed that the adsorption was strongly followed by chemisorptions mechanism based on the adsorbent surface properties, kinetic model and Langmuir isotherm model. Most importantly, about 98% of volume reduction was obtained by burning (500 °C) the Cs adsorbed charcoal, which ensured safe storage and disposal of radioactive waste. Therefore, this study can offer a guideline to produce a functional adsorbent for effective Cs removal and safe radioactive waste disposal.The influence of electromagnetic fields on bacterial denitrification has been tested on synthetic media with sludges from wastewater treatment stations, in batch mode. The effects of the intensity of the magnetic induction ratio B (mT), reaction volume and initial biomass concentration on the kinetics of the denitrification process were studied. Magnetic field had both an optimal stimulating effect on the activity of the denitrifying flora for B (mT)/mgx values of the order of 0.212, and an inhibitory effect for the values beyond the latter.Sludges underwent multiple exposure cycles to magnetic fields. It was shown that, after three exposure cycles, denitrification kinetics went from 6.5 to 12.7 mg N-NO-3.L-1.h-1 which corresponds to a 2.7 fold improvement. compound W13 research buy The improved performance persists even after the cessation of the magnetic field. Observation of the sludge by the environmentalelectron microscope shows that the microbial population forming the starting sludge; changed following exposure to the magnetic field. The action of the; electromagnetic field on the microbial populations in denitrification resulted in the modification of the diversity of the flora that is initially present, favoring the development of Proteo bacteria, particularly the Betaproteo bacteria subclass, which results in improved denitrification.Herein, we have designed and synthesized a metal-organic framework (MOF)-like lanthanum-methanoate (LaMe) nanocomplex for the remediation of arsenate (AsO43-) from aqueous environment, in which AsO43- replaces the formic acid from LaMe through ligand exchange, partially disintegrates the crystal lattice, and is re-precipitated as LaAsO4. Consequently, the sucrose-derived biomass carbon (SBC) was utilized as supporting material to develop nanohybrid of LaMe@SBC to inhibit the solubility of lanthanum from LaMe, and enhance the adsorption ability towards AsO43- from water. The maximum adsorption densities of AsO43- on SBC and LaMe were (0.059 and 0.793) mmol/g, respectively. On the other hand, the synergistically re-constructed LaMe@SBC nanohybrid possesses AsO43- adsorption density of 0.918 mmol/g at 25 °C. The studies, including contact time, solution pH, competitive anions, and initial AsO43- concentration, were optimized for maximum AsO43- removal. The adsorption density of the LaMe@SBC for AsO43- removal was pH-dependent, and possesses the maximum adsorption density at pH (4.0 and 5.0); moreover, the removal process was highly selective in the presence of common co-existing anions, except PO43- ion. The adsorption isotherm and kinetics of the LaMe@SBC nanohybrid closely fitted the Langmuir isotherm and pseudo-second-order kinetic models, respectively. The surface interactions among the LaMe@SBC nanohybrid and AsO43- were revealed through FTIR and PXRD analyses. The adsorption of AsO43- on the LaMe@SBC nanohybrid was primarily a chemisorption, namely ligand exchange and electrostatic interactions. The results reported in this research work highlight the feasibility of the LaMe@SBC nanohybrid as a real adsorbent for the removal of AsO43- from aqueous environment.Although climate change occurs alongside other anthropogenic ecosystem impacts, little is known about how sea-surface temperature variability influences the ecotoxicology of persistent organic pollutants (POPs). We analyzed POP contaminant levels, and stable isotopes δ15N and δ13C as measures of trophic position, in eggs collected from the Gulf of Alaska and Bering Sea between 1999 and 2010 from two similar avian species with different trophic positions common murres (Uria aalge) and thick-billed murres (Uria lomvia). The ebb and flow of the Pacific Decadal Oscillation (PDO), a long-lived El Niño-like pattern of climate variability in the Pacific Ocean, predicted both trophic position and polychlorinated biphenyl (PCB) levels in thick-billed murres, but not in common murres. There was a similar pattern of association of the PDO with organochlorine pesticide levels in thick-billed murres, but not in common murres. The magnitude of association in thick-billed murres of PDO with the level of a specific PCB congener was a function of the number of chlorine groups on the PCB congener. Although this statistical analysis does not account for all factors contributing to climate variation, this contrast between the species suggests that facultative changes in foraging behavior, reflected in trophic position, can determine how POPs flow through and thereby alter ecosystems under climate change.Three rational number notations -- fractions, decimals, and percentages -- have existed in their modern forms for over 300 years, suggesting that each notation serves a distinct function. However, it is unclear what these functions are and how people choose which notation to use in a given situation. In the present article, we propose quantification process theory to account for people's preferences among fractions, decimals, and percentages. According to this theory, the preferred notation for representing a ratio corresponding to a given situation depends on the processes used to quantify the ratio or its components. Quantification process theory predicts that if exact enumeration is used to generate a ratio, fractions will be preferred to decimals and percentages; in contrast, if estimation is used to generate the ratio, decimals and percentages will be preferred to fractions. Moreover, percentages will be preferred over decimals for representing ratios when approximation to the nearest percent is sufficiently precise, due to the lesser processing demands of using percentages. Experiments 1, 2, and 3 yielded empirical evidence regarding preferences that were consistent with quantification process theory. Experiment 4 indicated that the accuracy with which participants identified the numerical values of ratios when they used different notations generally paralleled their preferences. Educational implications of the findings are discussed.