Molleruprichardson2342

Z Iurium Wiki

Previous work has shown that a set of two diffractive optical elements arranged in series can form a diffractive lens with variable optical power that can be tuned by relative rotation of its two sub-elements about their common central axis. However, previous designs of these diffractive optical elements did not take advantage of the full spatial resolution required for the fabrication process because the corresponding sub-elements consisted of both, regions with very high phase gradients (requiring full resolution) and other extended regions with nearly vanishing phase gradients, where the available resolution is "wasted". Here, an advanced design is proposed that exploits the full spatial bandwidth of the production system. This is done by increasing the polar (angular) phase gradient of each sub-element such that it approaches the usually much larger radial phase gradient. A pair of these new sub-elements then composes a diffractive lens that has the same tuning range of its optical power than a standard tunable diffractive lens, but advantageously achieved within a much smaller relative rotation range. This has advantages in systems where high speed tuning of optical power is required, and in systems where the rotation angle is limited.We demonstrate the design, production, characterization and application of two dispersive complementary mirror pairs compensating second- and third-order dispersion, respectively. Both mirror pairs operate in the spectral range from 1.2-3.2µm. This is an unprecedented bandwidth of over 1.4 octaves which can drive further improvements in CrZnS, CrZnSe and other laser systems with a central wavelength around 2µm. The first pair provides a constant group delay dispersion of -100fs2, while the second one enables the compensation of the third-order dispersion that is introduced by a TiO2 crystal.The design of new x-ray phase contrast imaging setups often relies on Monte Carlo simulations for prospective parameter studies. Monte Carlo simulations are known to be accurate but time consuming, leading to long simulation times, especially when many parameter variations are required. This is certainly the case for imaging methods relying on absorbing masks or gratings, with various tunable properties, such as pitch, aperture size, and thickness. In this work, we present the virtual grating approach to overcome this limitation. By replacing the gratings in the simulation with virtual gratings, the parameters of the gratings can be changed after the simulation, thereby significantly reducing the overall simulation time. The method is validated by comparison to explicit grating simulations, followed by representative demonstration cases.Opto-optical loss modulation (OOM) for stabilization of the carrier-envelope offset (CEO) frequency of a femtosecond all-fiber laser is performed using a collinear geometry. Amplitude-modulated 1064 nm light is fiber coupled into an end-pumped semiconductor saturable absorber mirror (SESAM)-mode-locked all-polarization-maintaining erbium fiber femtosecond laser, where it optically modulates the loss of the SESAM resulting in modulation of the CEO frequency. A noise rejection bandwidth of 150 kHz is achieved when OOM and optical gain modulation are combined in a hybrid analog/digital loop. Collinear OOM provides a simple, all-fiber, high-bandwidth method for improving the CEO frequency stability of SESAM mode-locked fiber lasers.We demonstrate high-sensitivity vibrational absorption spectroscopy in the 2-micron wavelength range by using a mode-locked CrZnS laser. Interferometric subtraction and multichannel detection across the broad laser spectrum realize simultaneous background-free detection of multiple vibrational modes over a spectral span of >380 cm-1. Importantly, we achieve detection of small absorbance on the order of 10-4, which is well below the detection limit of conventional absorption spectroscopy set by the detector dynamic range. The results indicate the promising potential of the background-free method for ultrasensitive and rapid detection of trace gases and chemicals.Shortening pulse width can improve the power efficiency and data rate of a pulse position modulation (PPM) based underwater wireless optical communication (UWOC) system at a fixed average optical power, which is more suitable for the energy-limited underwater environment. As a common method to generate short pulses, gain switching has the advantages of a tunable switching frequency and simple structure, facilitating the generation of high-order PPM signals. However, the output characteristics of electrical gain switching seriously affect the demodulation of PPM signals and limit the data rate. To study the performance of gain switching on a PPM communication system, simulation models of the semiconductor laser diode and the driving circuit are built to describe the generation of electrical and optical pulses. The pulse width, pulse peak value, and peak position of optical pulses are analyzed under different symbol durations and PPM orders. Furthermore, a 64-PPM/150-Mbps UWOC system with a 200-ps optical pulse width is demonstrated by using a gain-switched blue GaN-based laser diode in a water tank. The peak average power ratio (PAPR) is 19.5 dB. Via the statistical analysis of experiment results and the output characteristics of electrical gain switching, the main factor limiting the data rate attributes to the time delay fluctuation of gain switching. To the best of our knowledge, this is the first time that gain switching has been experimentally demonstrated and analyzed in a high-order PPM based UWOC system.High-power optical systems are used in a number of industrial applications. One difficulty in designing such systems is that the beam itself is a significant source of heat, which changes the optical properties of the system. To reduce this effect, we propose a new thermal lensing compensation technique based on a detailed analysis of the optical properties of the high-power optical system. To this end, we have developed a new ray tracing simulation technique that accurately models optical propagation through inhomogeneous, anisotropic, and deformed media. This model enables the performance of systems in physically realistic situations to be evaluated efficiently. Experimental comparisons were conducted to validate the simulation. We found excellent agreement between the simulation and the measured data. We have validated the simulation technique for a single lens setup and a complex optical scanner system.We report the fabrication of a mid-infrared device using LaB6 - Al2O3 - LaB6 trilayers, with an array of LaB6 strips as the top layer. Uniaxially oriented lanthanum hexaboride (LaB6) films self-organized in a (100) orientation were adopted together with a lithographic process using laser direct writing followed by reactive ion etching. The fabricated infrared absorbers based on our electromagnetic design exhibited excellent resonant absorption and flexible tunability by changing the periodicity and width of the top LaB6 strips. We examined the performance of epitaxial and sputtered LaB6 films by fabricating two different types of absorbers using sputtered LaB6(100) and epitaxial LaB6(100) films for the bottom mirror layers. Owing to a difference in crystallinity, the latter exhibited a lower background in the absorption spectra as well as in the thermal emission spectra, indicating its good spectral selectivity.The combination of new noble metal nanomaterials and surface enhanced Raman scattering (SERS) technology has become a new strategy to solve the problem of low sensitivity in the detection of traditional Chinese medicine. In this work, taking natural cicada wing (C.w.) as a template, by optimizing the magnetron sputtering experimental parameters for the growth of Ag nanoparticles (NPs) on vanadium-titanium (V-Ti) nanorods, the nanogaps between the nanorods were effectively regulated and the Raman signal intensity of the Ag15/V-Ti20/C.w. substrate was improved. The proposed homogeneous nanostructure exhibited high SERS activity through the synergistic effect of the electromagnetic enhancement mechanism at the nanogaps between the Ag NPs modified V-Ti nanorods. The analytical enhancement factor (AEF) value was as high as 1.819 × 108, and the limit of detection (LOD) was 1 × 10-11 M for R6G. The large-scale distribution of regular electromagnetic enhancement "hot spots" ensured the good reproducibility with the relative standard deviation (RSD) value less than 7.31%. More importantly, the active compound of Artemisinin corresponded the pharmacological effect of Artemisia annua was screened out by SERS technology, and achieved a LOD of 0.01 mg/l. This reliable preparation technology was practically applicable to produce SERS-active substrates in detection of pharmacodynamic substance in traditional Chinese medicine.A novel photonic-assisted 2-D Terahertz beam steering chip using only two tuning elements is presented. Guanosine datasheet The chip is based on an array of three leaky wave antennas (LWAs) with a monolithically integrated beamforming network (BFN) on a 50 µm-thick indium phosphide substrate. The THz beam angle in elevation (E-plane) is controlled via optical frequency tuning using a tunable dual-wavelength laser. An optical delay line is used for azimuth (H-plane) beam control. The simulated beam scanning range is 92° in elevation for a frequency sweep from 0.23 THz to 0.33 THz and 69.18° in azimuth for a time delay of 3.6 ps. For the frequency range from 0.26 THz to 0.32 THz, it is confirmed experimentally that the THz beam scans from -12° to +33°, which is in good agreement with the numerical simulations. The beam direction in azimuth scans with a total angle of 39° when applying a delay difference of 1.68 ps. A good agreement is found between theoretically predicted and experimentally determined THz beam angles with a maximum angle deviation below 5°. The experimental scanning angles are limited due to the mechanical constraints of the on-wafer probes, the on-chip integrated transition and the bandwidth of the THz receiver LNA. The mechanical limitation will be overcome when using a packaged chip.Holographic particle characterization uses quantitative analysis of holographic microscopy data to precisely and rapidly measure the diameter and refractive index of individual colloidal spheres in their native media. When this technique is applied to inhomogeneous or aspherical particles, the measured diameter and refractive index represent properties of an effective sphere enclosing each particle. Effective-sphere analysis has been applied successfully to populations of fractal aggregates, yielding an overall fractal dimension for the population as a whole. Here, we demonstrate that holographic characterization also can measure the fractal dimensions of an individual fractal cluster by probing how its effective diameter and refractive index change as it undergoes rotational diffusion. This procedure probes the structure of a cluster from multiple angles and thus constitutes a form of tomography. Here we demonstrate and validate this effective-sphere interpretation of aspherical particles' holograms through experimental studies on aggregates of silica nanoparticles grown under a range of conditions.

Autoři článku: Molleruprichardson2342 (Holck Clemmensen)