Mogensengreene4500
DNA-protein interactions regulate several biophysical functions, yet the mechanism of only a few is investigated in molecular detail. An important example is the intercalation of transcription factor proteins into DNA that produce bent and kinked DNA. Here, we have studied the molecular mechanism of the intercalation of a transcription factor SOX4 into DNA with a goal to understand the sequence of molecular events that precede the bending and kinking of the DNA. Our long well-tempered metadynamics and molecular dynamics (MD) simulations show that the protein primarily binds to the backbone of DNA and rotates around it to form an intercalative native state. We show that although there are multiple pathways for intercalation, the deintercalation pathway matches with the most probable intercalation pathway. In both cases, bending and kinking happen simultaneously, driven by the onset of the intercalation of the amino acid.Parastichy, the spiral arrangement of plant organs, is an example of the long-range apparent order seen in biological systems. These ordered arrangements provide scientists with both an aesthetic challenge and a mathematical inspiration. Synthetic efforts to replicate the regularity of parastichy may allow for molecular-scale control over particle arrangement processes. Here we report the packing of a supramolecular truncated cuboctahedron (TCO) into double-helical (DH) nanowires on a graphite surface with a non-natural parastichy pattern ascribed to the symmetry of the TCOs and interactions between TCOs. Such a study is expected to advance our understanding of the design inputs needed to create complex, but precisely controlled, hierarchical materials. It is also one of the few reported helical packing structures based on Platonic or Archimedean solids since the discovery of the Boerdijk-Coxeter helix. As such, it may provide experimental support for studies of packing theory at the molecular level.Bacillus thuringiensis (Bt) has been recognized for its high potential in the control of various agricultural pests. Developments in micro/nanotechnology have opened new perspectives for the production of more efficient formulations that can overcome some obstacles associated with its use in the field, such as formulation instability and loss of activity as a result of the degradation of pesticidal protein by its exposure to ultraviolet radiation, among other problems. This review describes current studies and recent discoveries related to Bt and processes for the encapsulation of Bt derivatives, such as Cry pesticidal proteins. Different techniques are described, such as extrusion, emulsion, spray drying, spray cooling, fluidized bed, lyophilization, coacervation, and electrospraying to obtain micro- and nanoparticulate systems. It is noteworthy that products based on microorganisms present less risk to the environment and non-target organisms. However, systematic risk assessment studies of these new Bt biopesticides are necessary, considering issues, such as interactions with other organisms, the formation of toxic secondary metabolites, or the interspecific transfer of genetic material. Danicopan Complement System inhibitor Given the great potential of these new formulations, a critical assessment is provided for their future use, considering the technological challenges that must be overcome to achieve their large-scale production for efficient agricultural use.The eradication of recurrent Pseudomonas aeruginosa (PA) lung infection in cystic fibrosis (CF) patients may be hampered by the development of persistent bacterial forms, which can tolerate antibiotics through efflux pump overexpression. After demonstrating the efflux pump inhibitory effect of the alkaloid berberine on the PA MexXY-OprM efflux pump, in this study, we tested its ability (80/320 μg/mL) to enhance tobramycin (20xMIC/1000xMIC) activity against PA planktonic/biofilm cultures. Preliminary investigations of the involvement of MexY in PA tolerance to tobramycin treatment, performed on the isogenic pair PA K767 (wild type)/K1525 (ΔmexY) growing in planktonic and biofilm cultures, demonstrated that the ΔmexY mutant K1525 produced a lower (100 and 10 000 times, respectively) amount of tolerant cells than that of the wild type. Next, we grew broth cultures of PAO1, PA14, and 20 PA clinical isolates (of which 13 were from CF patients) in the presence of 20xMIC tobramycin with and without berberine 80 μg/mL. Accordingly, most strains showed a greater (from 10- to 1000-fold) tolerance reduction in the presence of berberine. These findings highlight the involvement of the MexXY-OprM system in the tobramycin tolerance of PA and suggest that berberine may be used in new valuable therapeutic combinations to counteract persister survival.B-site Os-doped quadruple perovskite oxides LaCu3Fe4-xOsxO12 (x = 1 and 2) were prepared under high-pressure and high-temperature conditions. Although parent compound LaCu3Fe4O12 experiences Cu-Fe intermetallic charge transfer that changes the Cu3+/Fe3+ charge combination to Cu2+/Fe3.75+ at 393 K, in the Os-doped samples, the Cu and Fe charge states are found to be constant 2+ and 3+, respectively, indicating the complete suppression of charge transfer. Correspondingly, Os6+ and mixed Os4.5+ valence states are determined by X-ray absorption spectroscopy for x = 1 and x = 2 compositions, respectively. The x = 1 sample crystallizes in an Fe/Os disordered structure with the Im3̅ space group. It experiences a spin-glass transition around 480 K. With further Os substitution up to x = 2, the crystal symmetry changes to Pn3̅, where Fe and Os are orderly distributed in a rocksalt-type fashion at the B site. Moreover, this composition shows a long-range Cu2+(↑)Fe3+(↑)Os4.5+(↓) ferrimagnetic ordering near 520 K. This work provides a rare example for 5d substitution-suppressed intermetallic charge transfer as well as induced structural and magnetic phase transitions with high spin ordering temperature.A previously developed spectrometer for broadband electron paramagnetic resonance (EPR) spectroscopy of dilute randomly oriented systems has been considerably modified to extend the frequency reach down to the hundred MHz range and to boost concentration sensitivity by 1 to 2 orders of magnitude. The instrument is now suitable for the study of biological systems in particular metalloproteins. As a proof of concept, examples from the class of low-spin ferric hemoproteins are studied in terms of frequency-dependent changes in their EPR spectra. Mono-heme cytochrome c EPR is determined by g-strain over a wide frequency range, whereas a combination of unresolved ligand hyperfine interaction and concentration-dependent intermolecular dipolar interaction becomes dominant at very low frequencies. In the four heme containing cytochrome c3, g-strain combines with intramolecular dipolar interaction over the full-studied frequency range of 0.23-12.0 GHz. It is concluded that the point-dipole approach is inappropriate to describe magnetic interactions between low-spin ferric heme systems and that a body of literature on redox interactions in multi-heme proteins will be affected by this conclusion.