Moesgaardweiss3881
Orthorexia nervosa (ON) has been defined as an obsessive and pathological attitude towards healthy nutrition. The aim of this study was to compare individuals who followed a vegan, vegetarian, and omnivore diet in terms of ON behaviors and to examine their prime motivations, attitudes, and behaviors towards food. The Spanish version of the ORTO-15 test - ORTO-11-ES - and the Food Choice Questionnaire (FCQ-SP) were used with a demographic questionnaire in an online survey disseminated among the social networks of different vegetarian associations and the general population. Of 466 individuals, 55% followed an omnivore diet, 23.5% were vegetarian and 21.7% were vegan. Results revealed relationships between type of diet and FCQ-SP dimensions for health and natural content (H = 8.7, p less then 0.05), sensory appeal (H = 11.4, p less then 0.01), weight control (H = 40.4, p less then 0.01), and familiarity (H = 37.3, p less then 0.01). Our results confirm the findings of recent studies showing that individuals who follow a vegan or vegetarian diet are more likely to develop a pathological preoccupation with healthy eating versus omnivores. Further studies are required to determine the potential lines of action for the prevention of ON.Neural oscillations reflect rhythmic fluctuations in the synchronization of neuronal populations and play a significant role in neural processing. To further understand the dynamic interactions between different regions in the brain, it is necessary to estimate the coupling direction between neural oscillations. Here, we developed a novel method, termed weighted symbolic transfer entropy (WSTE), that combines symbolic transfer entropy (STE) and weighted probability distribution to measure the directionality between two neuronal populations. The traditional STE ignores the degree of difference between the amplitude values of a time series. In our proposed WSTE method, this information is picked up by utilizing a weighted probability distribution. The simulation analysis shows that the WSTE method can effectively estimate the coupling direction between two neural oscillations. In comparison with STE, the new method is more sensitive to the coupling strength and is more robust against noise. When applied to epileptic electrocorticography data, a significant coupling direction from the anterior nucleus of thalamus (ANT) to the seizure onset zone (SOZ) was detected during seizures. Considering the superiorities of the WSTE method, it is greatly advantageous to measure the coupling direction between neural oscillations and consequently characterize the information flow between different brain regions.We aimed to explore psychological effects of the coronavirus pandemic on Hungarian adults in the time of the national quarantine situation in May 2020.We conducted a cross-sectional observational study with the use of an anonymous online questionnaire that consisted of 65 items. The following measuring instruments were used Perceived Stress Scale (PSS-10); The General Anxiety Disorder Assessment (GAD)-2; The Patient Health Questionnaire (PHQ)-2; European Quality of Life Visual Analogue Scale (EQ-VAS); Self-administered inventory of complaints (Hungarian questionnaire); Shortened (Hungarian) version of the Ways of Coping Questionnaire; 2 open-ended questions to examine the participants' mood and ways of coping during the pandemic. The data of 431 participants were analyzed, their average age was 47.53 ± 11.66 years, and the percentage of females was 90%. The mean of participants' scores were the following 19.34 ± 7.97 for perceived stress, 73.05 ± 21.73 for health status, and 8.68 ± 4.65 for neurotic complaints. Thirty-four and one-tenth percent of participants were depressed, 36.2% were anxious, and they tended to use problem-focused coping strategies more frequently than emotion-focused ones. We found significant correlations between all of the seven examined psychological variables. Our results highlight the importance of stress management in the psychological support of healthy adults in quarantine situation caused by the coronavirus pandemic.Cryptophycin-1 is a cyanotoxin produced by filamentous cyanobacteria. It has been evaluated as an anticancer agent with great potential. However, its synthesis provides insufficient yield for industrial use. An alternative solution for metabolite efficient production is to stress cyanobacteria by modifying the environmental conditions of the culture (Nostoc sp. ATCC 53789). Here, we examined the effects of light photoperiod, wavelength, and intensity. In light photoperiod, photoperiods 240 and 168 (lightdark) were tested while in wavelength, orange-red light was compared with blue. Medium, high, and very high light intensity experiments were performed to test the effect of light stress. For a 10-day period, growth was measured, metabolite concentration was calculated through HPLC, and the related curves were drawn. The differentiation of light wavelength had a major effect on the culture, as orange-red filter contributed to noticeable increase in both growth and doubled the cyanotoxin concentration in comparison to blue light. Remarkably, constant light provides higher cryptophycin yield, but slightly lower growth rate. Lastly, the microorganism prefers medium light intensities for both growth and metabolite expression. The combination of these optimal conditions would contribute to the further exploitation of cryptophycin.Abrasive blasting is a process widely used in dentistry. One of the uses is the development of metal surfaces for connections with ceramics in fixed prosthetic restorations. The purpose of this paper was to check how the rough surface profile (width, height, and depth on unevenness) impacts the surface's condition, like its wettability and percentage of stuck abrasives. The Ni-Cr alloy surface was abrasive blasted by silicon carbide with the various pressure parameters (0.2, 0.4, and 0.6 MPa) and abrasive particle sizes (50, 110, and 250 µm). Cleaned surfaces were examined for roughness, wettability, and percentage of stuck abrasive particles on the surface. The surface after abrasive blasting using 110 µm of abrasive size and 0.4 MPa pressure has the best wettability results. The width of unevenness may cause it. When the unevenness has too small or too large width and depth, the fluids may not cover the entire cavities because of locking the air. The surface condition of dental alloys directly affects metal-ceramic connection strength. The knowledge about the impact of the abrasive blasting parameters on the bond strength will allow one to create durable dental restorations.Glucose is the primary energy source for the brain, and exposure to both high and low levels of glucose has been associated with numerous adverse central nervous system (CNS) outcomes. While a large body of work has highlighted the impact of hyperglycemia on peripheral and central measures of oxidative stress, cognitive deficits, and vascular complications in Type 1 and Type 2 diabetes, there is growing evidence that glycemic variability significantly drives increased oxidative stress, leading to neuroinflammation and cognitive dysfunction. In this review, the latest data on the impact of glycemic variability on brain function and neuroinflammation will be presented. Because high levels of oxidative stress have been linked to dysfunction of the blood-brain barrier (BBB), special emphasis will be placed on studies investigating the impact of glycemic variability on endothelial and vascular inflammation. The latest clinical and preclinical/in vitro data will be reviewed, and clinical/therapeutic implications will be discussed.Frequent location updates of individual Internet of Things (IoT) devices can cause several problems (e.g., signaling overhead in networks and energy depletion of IoT devices) in massive machine type communication (mMTC) systems. To alleviate these problems, we design a distributed group location update algorithm (DGLU) in which geographically proximate IoT devices determine whether to conduct the location update in a distributed manner. To maximize the accuracy of the locations of IoT devices while maintaining a sufficiently small energy outage probability, we formulate a constrained stochastic game model. We then introduce a best response dynamics-based algorithm to obtain a multi-policy constrained Nash equilibrium. learn more From the evaluation results, it is demonstrated that DGLU can achieve an accuracy of location information that is comparable with that of the individual location update scheme, with a sufficiently small energy outage probability.Fruit and vegetable polyphenols are associated with health benefits, and those not absorbed could be fermented by the gastro-intestinal tract microbiota. Many fermentation studies focus on "pure" polyphenols, rather than those associated with plant cell walls (PCW). Black carrots (BlkC), are an ideal model plant food as their polyphenols bind to PCW with minimal release after gastro-intestinal digestion. BlkC were fractionated into three components-supernatant, pellet after centrifugation, and whole puree. Bacterial cellulose (BCell) was soaked in supernatant (BCell&S) as a model substrate. All substrates were fermented in vitro with a pig faecal inoculum. Gas kinetics, short chain fatty acids, and ammonium production, and changes in anthocyanins and phenolic acids were compared. This study showed that metabolism of BlkC polyphenols during in vitro fermentation was not affected by cellulose/cell wall association. In addition, BCell&S is an appropriate model to represent BlkC fermentation, suggesting the potential to examine fermentability of PCW-associated polyphenols in other fruits/vegetables.The better understanding of the clinically important behavioral features of new instrument systems has an important significance for the clinical endodontics. This study aimed to investigate the shaping and centering ability as well as cyclic fatigue resistance of HyFlex CM (CM), HyFlex EDM (EDM) and EdgeFile (EF) thermally treated nickel-titanium (NiTi) endodontic instrument systems. Sixty curved root canals of the mesial roots of mandibular molars were randomly assigned into three groups (n = 20) and shaped using CM, EDM and EF files up to the size 40 and taper 04 of the instruments. µCT scanning of the specimens before and after preparation was performed and the morphometric 2D and 3D parameters were evaluated in the apical, middle and coronal thirds of root canals. In each group, 40.04 instruments (n = 20) were subjected to the cyclic fatigue resistance test in artificial root canals at 37 °C temperature until fractures occurred, and the number of cycles to failure (NCF) was calculated. The fractographic analysis was performed using a scanning electron microscope, evaluating topographic features and surface profiles of the separated instruments. The one-way analysis of variance with post hoc Tuckey's test was used for statistical analysis of the data; the significance level was set at 5%. All systems prepared the comparable percentage of root canal surface with the similar magnitude of canal transportation in all root thirds (p > 0.05), but demonstrated significantly different resistance to cyclic fatigue (p less then 0.05). The most resistant to fracture was EF, followed by EDM and CM. The length of the fractured fragments was not significantly different between the groups, and fractographic analysis by SEM detected the typical topographic features of separated thermally treated NiTi instrument surfaces.