Mirandathorsen1945
ially beneficial effects on the inflammatory component of brain diseases such as stroke and Alzheimer's disease.
Solanum lycocarpum St. Hil. (Solanaceae) is widely distributed in the Brazilian Cerrado and is used in folk medicine for treatment of inflammatory disorders, such as asthma and hepatitis, as weel as antirheumatic.
The aims of this study were to evaluate the antioxidant, anti-inflammatory and antinociceptive activities of the ethanol extract (EE) obtained from the ripe fruits of S. lycocarpum and to identify its chemical constituents.
The extract was obtained by percolation with ethanol. This extract was analyzed by liquid chromatography coupled to a diode array detector and mass spectrometer (LC-DAD-MS) for identify its chemical constituents. The antioxidant activity was determined by the reaction with 1,1-diphenyl-2-picrylhydrazyl radical (DPPH). In vivo anti-inflammatory potential was assessed using carrageenan-induced paw edema model, while qualitative and quantitative histological analyses evaluated of the inflammatory infiltrate at different times and treatments. The antinociceptive effect of the Eed the antinociceptive activity of morphine in the both phases the test, but it did not reverse the antinociceptive activity of the EE. VU661013 The EE (300mg/kg) also caused an increase in the latency to response in the hot-plate test.
The ripe fruits of S. lycocarpum exhibit antioxidant, anti-inflammatory, and antinociceptive activities, attributed mainly to the presence of alkaloids, such as solasodine and peiminine, as well as caffeoylquinic acids in their chemical composition. These results contribute to use of S. lycocarpum ripe fruits for the treatment of inflammatory and painful process.
The ripe fruits of S. lycocarpum exhibit antioxidant, anti-inflammatory, and antinociceptive activities, attributed mainly to the presence of alkaloids, such as solasodine and peiminine, as well as caffeoylquinic acids in their chemical composition. These results contribute to use of S. lycocarpum ripe fruits for the treatment of inflammatory and painful process.
Endoplasmic reticulum (ER) stress plays a role in the pathogenesis of diabetes mellitus, contributing to pancreatic dysfunction and insulin resistance. Ameliorating ER stress may be a viable therapeutic approach in the proper management of diabetes mellitus. Cymbopogon citratus (C.citratus) has been used in traditional medicine in the management of diabetes mellitus. Although well known for its anti-diabetic effect, the mechanism underlying this effect remains unclear.
This study was designed to investigate the effect of C. citratus methanolic leaves extract on ER stress induced by streptozotocin (STZ) in wistar rats.
STZ (60mg/kg) was used to induce ER stress in the pancreas of rats. The rats were administered C. citratus methanolic leaves extract via gastric gavage at doses 100, 200 and 400mg/kg for two weeks while metformin (100mg/kg) was used as positive control. Fasting blood glucose (FBG), expression of ER-stress related genes (GRP78, CHOP, ATF4, TRB3, PERK, IRE1), antioxidant (Nrf2 and AhR) and pgulative effect on NRF2 signaling.
These observations suggest that C. citratus mitigate ER stress induced by STZ via its down-regulative effect on GRP78 and up-regulative effect on NRF2 signaling.
Longan (Dimocarpus longan Lour.) is one of the most popular subtropical fruits. Various parts of longan, including seeds, pericarp and pulp, have long been used in traditional medicine in China, Thailand and other Asian countries. The pulp has high sugar, vitamin and mineral content as well as bioactive components. The seeds and pericarp have also been reported to contain beneficial polyphenolic compounds. Longan sugar extract from pulp (LGSP) is prepared as a conventional sugar product. Longan sugar extract from whole longan fruit (LGSW) is also offered as a health food and as a medicinal product.
The objective of this study was to identify and compare potential health hazards of both LGSW and LGSP by testing for acute and chronic oral toxicity in rats.
In acute toxicity testing, an oral dose (20g/kg) of either LGSW or LGSP was administered to groups of rats. Mortality and clinical signs of toxicity were observed for 24h, and then daily for a total of 14 days. In the chronic toxicity test, either LGSW m pulp alone.
The safety of longan sugar extract made from whole fruit (pulp, seeds and pericarb) is comparable to that of longan sugar extract made from pulp alone.
Vernonia patula (Dryand.) Merr. and Leucas chinensis (Retz.) R. Brown have anti-inflammatory properties and are popularly used as complementary and alternative medicine in Asia.
To investigate the underlying molecular mechanism and active chemicals in the ethanol extracts of V. patula (VP) and L. chinensis (LC).
The inhibitory activities of VP and LC on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) and interleukin-6 (IL-6) production were investigated in RAW264.7 macrophages and BV2 microglia. Downregulation of pro-inflammatory genes and upregulation of Nrf2 (NF-E2 p45-related factor 2)-ARE (antioxidant response element) pathway were investigated using RT-Q-PCR and Western blotting. Direct antioxidant capacities were measured using free radical scavenging and Folin-Ciocalteu assays. The flavonoids and triterpenes in VP and LC were identified by HPLC-ESI-MS.
VP and LC inhibited NO and IL-6 production and suppressed iNOS, IL-6, IL-1β and CCL2 gene expression. VP and LC were potent direct antioxidants and effective indirect antioxidants assayed by Nrf2 activation and induction of heme oxygenase (HO)-1, glutamate-cysteine ligase modifier subunit (GCLM) and NAD(P)H quinone oxidoreductase 1 (NQO1). Three flavonoids including apigenin (1), luteolin (2) and chryseriol (3), and one triterpene betulinic acid (4) were found in VP; while compounds 1-4 and oleanolic acid (5) were in LC.
Anti-inflammatory and antioxidant activities of VP and LC may be in great part attributed to the identified Nrf2 activating compounds, which induce expression of Phase II enzymes and attenuate the upregulation of pro-inflammatory genes.
Anti-inflammatory and antioxidant activities of VP and LC may be in great part attributed to the identified Nrf2 activating compounds, which induce expression of Phase II enzymes and attenuate the upregulation of pro-inflammatory genes.