Mirandalinnet1320
During the process of neuronal outgrowth, developing neurons produce new projections, neurites, that are essential for brain wiring. Here, we discover a relatively late-evolved protein that we denote Ac45-related protein (Ac45RP) and that, surprisingly, drives neuronal outgrowth. Ac45RP is a paralog of the Ac45 protein that is a component of the vacuolar proton ATPase (V-ATPase), the main pH regulator in eukaryotic cells. Ac45RP mRNA expression is brain specific and coincides with the peak of neurogenesis and the onset of synaptogenesis. Furthermore, Ac45RP physically interacts with the V-ATPase V0-sector and colocalizes with V0 in unconventional, but not synaptic, secretory vesicles of extending neurites. Excess Ac45RP enhances the expression of V0-subunits, causes a more elaborate Golgi, and increases the number of cytoplasmic vesicular structures, plasma membrane formation and outgrowth of actin-containing neurites devoid of synaptic markers. CRISPR-cas9n-mediated Ac45RP knockdown reduces neurite outgrowth. We conclude that the novel vertebrate- and brain-specific Ac45RP is a V0-interacting constituent of unconventional vesicular structures that drives membrane expansion during neurite outgrowth and as such may furnish a tool for future neuroregenerative treatment strategies.
4CMenB is a broadly protective vaccine against invasive meningococcal capsular group B disease (MenB IMD). Licensed worldwide based on immunogenicity and safety data, effectiveness and impact data are now available. We comprehensively reviewed all available real-world evidence gathered from use of 4CMenB since licensure.
Data from 7 countries provide evidence of effectiveness and impact across different healthcare settings and age-groups, including national/regional immunization programs, observational studies and outbreak control. At least 2 4CMenB doses reduced MenB IMD by 50%-100% in 2-month to 20-year-olds depending on length of follow-up. Estimates of vaccine effectiveness in fully vaccinated cohorts ranged from 59%-100%. The safety profile of 4CMenB administered in real-world settings was consistent with pre-licensure clinical trial data.
MenB IMD is an uncommon but life-threatening disease with unpredictable epidemiology. The substantial body of data demonstrating 4CMenB effectiveness and impact 6084/m9.figshare.14546790.
In England, the reopening of universities in September 2020 coincided with a rapid increase in SARS-CoV-2 infection rates in university aged young adults. This study aimed to estimate SARS-CoV-2 antibody prevalence in students attending universities that had experienced a COVID-19 outbreak after reopening for the autumn term in September 2020.
A cross-sectional serosurvey was conducted during 02-11 December 2020 in students aged ≤ 25 years across five universities in England. Blood samples for SARS-CoV-2 antibody testing were obtained using a self-sampling kit and analysed using the Abbott SARS-CoV-2 N antibody and/or an in-house receptor binding domain (RBD) assay.
SARS-CoV-2 seroprevalence in 2,905 university students was 17.8% (95%CI, 16.5-19.3), ranging between 7.6%-29.7% across the five universities. Seropositivity was associated with being younger likely to represent first year undergraduates (aOR 3.2, 95% CI 2.0-4.9), living in halls of residence (aOR 2.1, 95% CI 1.7-2.7) and sharing a kitchen with an increasing number of students (shared with 4-7 individuals, aOR 1.43, 95%CI 1.12-1.82; shared with 8 or more individuals, aOR 1.53, 95% CI 1.04-2.24). Seropositivity was 49% in students living in halls of residence that reported high SARS-CoV-2 infection rates (>8%) during the autumn term.
Despite large numbers of cases and outbreaks in universities, less than one in five students (17.8%) overall had SARS-CoV-2 antibodies at the end of the autumn term in England. In university halls of residence affected by a COVID-19 outbreak, however, nearly half the resident students became infected and developed SARS-CoV-2 antibodies.
Despite large numbers of cases and outbreaks in universities, less than one in five students (17.8%) overall had SARS-CoV-2 antibodies at the end of the autumn term in England. In university halls of residence affected by a COVID-19 outbreak, however, nearly half the resident students became infected and developed SARS-CoV-2 antibodies.
Current treatment and prognosis of Parkinson's disease (PD) are not ideal. This study explored the mechanism of long non-coding RNA (lncRNA) rhabdomyosarcoma 2-associated transcript (RMST) in dopaminergic (DA) neuron damage in PD rats.
PD rats were modeled and injected with RMST silence or overexpression vectors to figure out its roles in oxidative stress, the apoptosis of DA neurons in brain substantia nigra (SN), and neurobehavioral activities of PD rats. Tyrosine hydroxylase (TH), synaptophysin (SYN), glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule (Iba-1) in SN were detected. RMST and Toll-like receptor (TLR)/nuclear factor kappa B (NF-κB) pathway-related factors were detected.
RMST expression in brain SN of rats, TLR2, TLR4 expression in neurons and NF-κB expression in cell nucleus were increased. Silenced RMST improved the neurobehavioral activities, depressed oxidative stress and neuronal apoptosis, increased TH and SYN expression, and reduced the activation degree of glial cells in SN and the inflammatory response via reducing GFAP and Iba-1. Moreover, reduced RMST reduced TLR2 and TLR4 expression in neurons and NF-κB expression in cell nucleus in PD rats.
Inhibited RMST attenuates DA neuron damage in PD rats, which may be implicated with TLR/NF-κB signaling pathway.
Inhibited RMST attenuates DA neuron damage in PD rats, which may be implicated with TLR/NF-κB signaling pathway.
Resting-state functional magnetic resonance imaging (rs-fMRI) is widely applied to explore abnormal functional connectivity (FC) in patients with post-facial paralysis synkinesis (PFPS). However, most studies considered steady spatial-temporal signal interactions between distinct brain regions during the period of scanning.
In this study, we aim to investigate abnormal dynamic functional connectivity (dFC) in PFPS patients.
We enrolled 31 PFPS patients and 19 healthy controls. All participants underwent rs-fMRI. Selleck Bafilomycin A1 Sliding windows approach was applied to construct dFC matrices. Next, these matrices were clustered into distinct states using the k-means clustering algorithm.
We found that it was not the dFC patterns, but rather the temporal properties including the mean dwell time (MDT) and occurrence frequencies, that showed a significant difference between PFPS patients and healthy controls. Two randomly clustered dFC states were recognized for both groups. Among them, State 1 showed significantly lower connectivity compared to State 2 in patients group.