Mikkelsenvelasquez3548
The detection of pathogen-specific antibodies remains a cornerstone of clinical diagnostics. Yet, many test exhibit undesirable performance or are completely lacking. Given this, we developed serum epitope repertoire analysis (SERA), a method to rapidly discover conserved, pathogen-specific antigens and their epitopes, and applied it to develop an assay for Chagas disease caused by the protozoan parasite Trypanosoma cruzi. Antibody binding peptide motifs were identified from 28 Chagas repertoires using a bacterial display random 12-mer peptide library and next-generation sequencing (NGS). Thirty-three motifs were selected and mapped to candidate Chagas antigens. In a blinded validation set (n = 72), 30/30 Chagas were positive, 30/30 non-Chagas were negative, and 1/12 Leishmania sp. was positive. After unblinding, a Leishmania cross-reactive epitope was identified and removed from the panel. The Chagas assay exhibited 100% sensitivity (30/30) and specificity (90/90) in a second blinded validation set including individuals with other parasitic infections. Amongst additional epitope repertoires with unknown Chagas serostatus, assay specificity was 99.8% (998/1000). Thus, the Chagas assay achieved a combined sensitivity and specificity equivalent or superior to diagnostic algorithms that rely on three separate tests to achieve high specificity. NGS-based serology via SERA provides an effective approach to discover antigenic epitopes and develop high performance multiplex serological assays.This study aimed to investigate the effects of microbial inoculants (L) and molasses (M) on the bacterial and fungal microbiomes of barley silage after the aerobic stage. Vandetanib supplier The addition of molasses and microbial inoculants improved the aerobic stability of barley silage. The ML silage, which had a low pH value and high lactic and acetic acid contents, remained aerobically stable for more than 216 h. The ML silage exhibited low bacterial and high fungal diversities. Microbial inoculants and molasses enriched the abundance of Lactobacillus in silage after aerobic exposure. The enrichment of L. buchneri was significant in ML silage at days 5 and 7 during the aerobic stage. The abundance of harmful microorganisms, such as aerobic bacterial including Acinetobacter, Providencia, Bacillus, and yeasts including Issatchenkia, Candida, and Kazachstania, were suppressed in ML silage. M and L had an impact on bacterial and fungal microbes, resulting in the improvement of fermentation quality and reduction of aerobic spoilage in barley silage.Ocean acidification and warming (OA-W) result mainly from the absorption of carbon dioxide and heat by the oceans, altering its physical and chemical properties and affecting carbonate secretion by marine calcifiers such as gastropods. These processes are ongoing, and the projections of their aggravation are not encouraging. This work assesses the concomitant effect of the predicted pH decrease and temperature rise on early life stages of the neogastropod Tritia reticulata (L.), a common scavenger of high ecological importance on coastal ecosystems of the NE Atlantic. Veligers were exposed for 14 days to 12 OA-W experimental scenarios generated by a factorial design of three pH levels (targeting 8.1, 7.8 and 7.5) at four temperatures (16, 18, 20 and 22 °C). Results reveal effects of both pH and temperature (T °C) on larval development, growth, shell integrity and survival, individually or interactively at different exposure times. All endpoints were initially driven by pH, with impaired development and high mes, shell dissolution and loss under OA-W projected scenarios will reduce larval performance, jeopardizing T. reticulata subsistence.The kidney is comprised of highly complex structures that rely on self-maintenance for their functions, and tissue repair and regeneration in renal diseases. We devised a proteomics assay to measure the turnover of individual proteins in mouse kidney. Mice were metabolically labeled with a specially formulated chow containing nitrogen-15 (15N) with the absence of normal 14N atoms. Newly synthesized proteins with 15N contents were distinguished from their 14N counterparts by mass spectrometry. In total, we identified over 4,000 proteins from the renal cortex with a majority of them contained only 15N. About 100 proteins had both 14N- and 15N-contents. Notably, the long-lived proteins that had large 14N/15N ratios were mostly matrix proteins. These included proteins such as type IV and type VI collagen, laminin, nidogen and perlecan/HSPG2 that constitute the axial core of the glomerular basement membrane (GBM). In contrast, the surface lamina rara proteins such as agrin and integrin had much shorter longevity, suggesting their faster regeneration cycle. The data illustrated matrix proteins that constitute the basement membranes in the renal cortex are constantly renewed in an ordered fashion. In perspective, the global profile of protein turnover is usefully in understanding the protein-basis of GBM maintenance and repair.Breast cancer (BC) is the leading cause of cancer-related death among women and the most commonly diagnosed cancer worldwide. Although in recent years large-scale efforts have focused on identifying new therapeutic targets, a better understanding of BC molecular processes is required. Here we focused on elucidating the molecular hallmarks of BC heterogeneity and the oncogenic mutations involved in precision medicine that remains poorly defined. To fill this gap, we established an OncoOmics strategy that consists of analyzing genomic alterations, signaling pathways, protein-protein interactome network, protein expression, dependency maps in cell lines and patient-derived xenografts in 230 previously prioritized genes to reveal essential genes in breast cancer. As results, the OncoOmics BC essential genes were rationally filtered to 140. mRNA up-regulation was the most prevalent genomic alteration. The most altered signaling pathways were associated with basal-like and Her2-enriched molecular subtypes. RAC1, AKT1, CCND1, PIK3CA, ERBB2, CDH1, MAPK14, TP53, MAPK1, SRC, RAC3, BCL2, CTNNB1, EGFR, CDK2, GRB2, MED1 and GATA3 were essential genes in at least three OncoOmics approaches. Drugs with the highest amount of clinical trials in phases 3 and 4 were paclitaxel, docetaxel, trastuzumab, tamoxifen and doxorubicin. Lastly, we collected ~3,500 somatic and germline oncogenic variants associated with 50 essential genes, which in turn had therapeutic connectivity with 73 drugs. In conclusion, the OncoOmics strategy reveals essential genes capable of accelerating the development of targeted therapies for precision oncology.