Mikkelsenhyde3964

Z Iurium Wiki

Mitral regurgitation (MR) is a major complication of the percutaneous mitral valvuloplasty (PMV). Despite high technical expertise and cumulative experience with the procedure, the incidence rate of severe MR has not decreased. Although some of MR can be anticipated by echocardiographic analysis; leaflet tearing, which leads to the most dreaded type of MR, remains unpredictable. Irregular valvular collagen remodeling is likely to compromise tissue architecture and increase the tearing risk during PMV balloon inflation. In this study, we evaluated histological and molecular characteristics of excised mitral valves from patients with rheumatic mitral stenosis (MS) who underwent emergency surgery after PMV due to severe MR caused by leaflet tear. Those findings were compared with patients who underwent elective mitral valve replacement surgery owing to severe MS, in whom PMV was not indicated. In vitro assay using peripheral blood mononuclear cells was performed to better understand the impact of the cellular and molecular alterations identified in leaflet tear mitral valve specimens. Our analysis showed that focal infiltration of inflammatory cells contributes to accumulation of MMP-1 and IFN-γ in valve leaflets. Moreover, we showed that IFN-γ increase the expression of MMP-1 in CD14+ cells (monocytes) in vitro. CP690550 Thus, inflammatory cells contribute to unevenly remodel collagen resulting in variable thickening causing abnormalities in leaflet architecture making them more susceptible to laceration.

This study compared clinical, echocardiographic, and prognostic characteristics among patients with aortic dissection (AD) with (HypHist) and without (No-HypHist) hypertension history and evaluated the association of blood pressure (BP) at presentation with 1-year mortality, left ventricular (LV) remodeling and renal dysfunction.

We investigated clinical and echocardiographic characteristics and 1-year mortality among 367 patients with AD (81% HypHist, 66% Type-A) from three Brazilian centers.

Patients with No-HypHist were more likely to have Marfan syndrome, bicuspid aortic valve, to undergo surgical therapy, were less likely to have LV hypertrophy and concentricity, and had similar mortality compared with HypHist patients. Adjusted restricted cubic spline analysis showed that systolic BP (SBP) and diastolic BP (DBP) at presentation had a J-curve association with mortality among patients with No-HypHist, but did not associate with death among patients with HypHist (

for interaction = 0.001 for SBP an patients with AD.Cardiovascular disease (CVD) is one of the leading causes of death worldwide. In recent years, regenerative medicine, tissue engineering and the development of new materials have become the focus of attention this field, and electrospinning technology to prepare nanofibrous materials for the treatment of cardiovascular diseases has attracted people's attention. Unlike previous reviews, this research enumerates the experimental methods and applications of electrospinning technology combined with nanofibrous materials in the directions of myocardial infarction repair, artificial heart valves, artificial blood vessels and cardiovascular patches from the perspective of cardiovascular surgery. In the end, this review also summarizes the limitations, unresolved technical challenges, and possible future directions of this technology for cardiovascular disease applications.

Arrhythmia is a very common complication of coronavirus disease 2019 (COVID-19); however, the prevalence of ventricular arrhythmia and associated outcomes are not well-explored. Here, we conducted a systematic review and meta-analysis to determine the prevalence and associated death of ventricular arrhythmia and sudden cardiac death (SCD) in patients with COVID-19.

Databases of PubMed, Cochrane Library, Embase, and MdeRxiv were searched. Studies that could calculate the prevalence of ventricular arrhythmia/SCD during hospital admission or associated death in patients with COVID-19 were included. The study was registered with the PROSPERO (CRD42021271328).

A total of 21 studies with 13,790 patients were included. The pooled prevalence of ventricular arrhythmia was 5% (95% CI 4-6%), with a relatively high-SCD prevalence (1.8% in hospitalized COVID-19 and 10% in deceased cases of COVID-19). Subgroup analysis showed that ventricular arrhythmia was more common in patients with elevated cardiac troponin T [ES (effect size) 10%, 95% CI -0.2 to 22%] and in European (ES 20%, 95% CI 11-29%) populations. Besides, ventricular arrhythmia was independently associated with an increased risk of death in patients with COVID-19 [odds ratio (OR) = 2.83; 95% CI 1.78-4.51].

Ventricular arrhythmia and SCD resulted as a common occurrence with a high prevalence in patients with COVID-19 admitted to the hospital. Furthermore, ventricular arrhythmia significantly contributed to an increased risk of death in hospitalized patients with COVID-19. Clinicians might be vigilant of ventricular arrhythmias for patients with COVID-19, especially for severe cases.

www.york.ac.uk/inst/crd, identifier CRD42021271328.

www.york.ac.uk/inst/crd, identifier CRD42021271328.Transcatheter aortic valve replacement (TAVR) has established itself as a safe and efficient treatment option in patients with severe aortic valve stenosis, regardless of the underlying surgical risk. Widespread adoption of transfemoral procedures led to more patients than ever being eligible for TAVR. This increase in procedural volumes has also stimulated the use of vascular closure devices (VCDs) for improved access site management. link2 In a single-center examination, we investigated 871 patients that underwent transfemoral TAVR from 2010 to 2020 and assessed vascular complications according to the Valve Academic Research Consortium (VARC) III recommendations. Patients were grouped by the VCD and both, vascular closure success and need for intervention were analyzed. In case of a vascular complication, the type of intervention was investigated for all VCDs. The Proglide VCD was the most frequently used device (n = 670), followed by the Prostar device (n = 112). Patients were old (median age 83 years) and patietients does experience minor vascular complications, in particular bleeding and hematoma. However, most complications do not require surgical or endovascular intervention. Temporal trends display a marked increase in TAVR procedures and highlight the need for more refined vascular access management strategies.

Pathological vascular remodeling is a hallmark of various vascular diseases. Smooth muscle cell (SMC) phenotypic switching plays a pivotal role during pathological vascular remodeling. The mechanism of how to regulate SMC phenotypic switching still needs to be defined. This study aims to investigate the effect of Andrographolide, a key principle isolated from Andrographis paniculate, on pathological vascular remodeling and its underlying mechanism.

A C57/BL6 mouse left carotid artery complete ligation model and rat SMCs were used to determine whether Andrographolide is critical in regulating SMC phenotypic switching. Quantitative real-time PCR, a CCK8 cell proliferation assay, BRDU incorporation assay, Boyden chamber migration assay, and spheroid sprouting assay were performed to evaluate whether Andrographolide suppresses SMC proliferation and migration. Immunohistochemistry staining, immunofluorescence staining, and protein co-immunoprecipitation were used to observe the interaction between EDNRA, EDNRB, and Myocardin-SRF.

Andrographolide inhibits neointimal hyperplasia in the left carotid artery complete ligation model. Andrographolide regulates SMC phenotypic switching characterized by suppressing proliferation and migration. Andrographolide activates the endothelin signaling pathway exhibited by dramatically inducing EDNRA and EDNRB expression. The interaction between EDNRA/EDNRB and Myocardin-SRF resulted in promoting SMC differentiation marker gene expression.

Andrographolide plays a critical role in regulating pathological vascular remodeling.

Andrographolide plays a critical role in regulating pathological vascular remodeling.

Transcatheter mitral valve-in-valve (TMVIV) procedure with aortic transcatheter heart valves has recently become a less invasive alternative for patients with mitral bioprosthetic dysfunction. This study reports the initial experience of TMVIV implantation using the J-Valve System (JieCheng Medical Technology Corporation Ltd., Suzhou, China).

A retrospective observational multicenter study was conducted to evaluate the short-term outcomes of TMVIV. In total, 26 consecutive patients with symptomatic bioprosthetic failure at eight hospitals underwent TMVIV using the J-Valve System between May 2019 and June 2021. Procedural results and clinical outcomes were analyzed using the Mitral Valve Academic Research Consortium criteria.

The mean age was 75.3 ± 7.1 years and 69.2% of patients were female. link3 The mean Society of Thoracic Surgeons Predicted Risk of Mortality score was 12.3 ± 8.3%. The technical success rate was 96.2%. Nine of the 26 patients (34.6%) were implanted with a J-Valve of a size equal to the internal diameters of the deteriorated prostheses. At the 30-day and 1-year follow-ups, all-cause mortality was 3.8 and 16.0% and the stroke rates were 0 and 12.0%, respectively. Device-related mortality was 0% and the mean mitral valve gradient was 6.4 ± 2.7 mm Hg. No patient experienced device embolization, left ventricular outflow tract obstruction, or mitral valve reintervention. Postprocedural mitral regurgitation was none or trace in all the patients. All the patients were in the New York Heart Association (NYHA) class ≤ II at the last follow-up.

Transcatheter implantation of the J-Valve System in high-risk patients with mitral bioprosthetic dysfunction was found to be a reasonable alternative and associated with good short-term outcomes.

Transcatheter implantation of the J-Valve System in high-risk patients with mitral bioprosthetic dysfunction was found to be a reasonable alternative and associated with good short-term outcomes.

Over one-half of patients with multiple myeloma (MM) die of heart failure or arrhythmia. Left ventricular ejection fraction (LVEF) is used to describe left ventricular systolic function. However, depressed LVEF means advanced stage of left ventricular dysfunction in patients with MM. Left ventricular pressure-strain-derived myocardial work (LVMW) is a novel and noninvasive method for evaluating LV function related to LV dynamic pressure load. MW is assessed by LV MW index (LVMWI), constructive work, wasted work, and LV MW efficiency (LVMWE). In this study, we aimed to investigate the value of LVMW in cardiac function assessment and clinical prognosis of MM patients with preserved LVEF.

A total of 72 subjects, including 40 untreated MM patients with preserved EF (including the thick wall and normal wall groups) and 32 non-MM patients, were enrolled in this study. Laboratory data and clinical history of all the patients were collected. All the patients underwent comprehensive echocardiographic examinations the thick wall group. LVMWI was presented as "apical sparing" in patients with MM. A lower LVGWE may have a predictive value for CAEs in patients with MM after 6 months of follow-up.

MM Patients with preserved EF had subclinical LV systolic dysfunction, which was worse in the thick wall group. LVMWI was presented as "apical sparing" in patients with MM. A lower LVGWE may have a predictive value for CAEs in patients with MM after 6 months of follow-up.

Autoři článku: Mikkelsenhyde3964 (Siegel Smart)