Meyerskriver2540

Z Iurium Wiki

For EEG we find a significant connectivity-phenotype relationship with IQ. The actual spatial patterns of functional connectivity are quite different between fMRI and source-space EEG. However, within EEG we observe clusters of functional connectivity that are consistent across frequency bands. Additionally we analyzed reproducibility of functional connectivity. We compare connectivity obtained with different tasks, including resting state, a video and a visual flicker task. For both EEG and fMRI the variation between tasks was smaller than the variability observed between subjects. We also found an increase of reliability with increasing frequency of the EEG, and increased sampling duration. We conclude that, while the patterns of functional connectivity are distinct between fMRI and phase-coupling of EEG, they are nonetheless similar in their robustness to the task, and similar in that idiosyncratic patterns of connectivity predict individual phenotypes.Since its first description and development in the late 20th century, diffusion magnetic resonance imaging (dMRI) has proven useful in describing the microstructural details of biological tissues. Signal generated from the protons of water molecules undergoing Brownian motion produces contrast based on the varied diffusivity of tissue types. Images employing diffusion contrast were first used to describe the diffusion characteristics of tissues, later used to describe the fiber orientations of white matter through tractography, and most recently proposed as a functional contrast method capable of delineating neuronal firing in the active brain. Thanks to the molecular origins of its signal source, diffusion contrast is inherently useful at describing features of the microenvironment; however, limitations in achievable resolution in magnetic resonance imaging (MRI) scans precluded direct visualization of tissue microstructure for decades following MRI's inception as an imaging modality. Even after advancements in MRI hardware had permitted the visualization of mammalian cells, these specialized systems could only accommodate fixed specimens that prohibited the observation and characterization of physiological processes. The goal of the current study was to visualize cellular structure and investigate the subcellular origins of the functional diffusion contrast mechanism (DfMRI) in living, mammalian tissue explants. Using a combination of ultra-high field spectrometers, micro radio frequency (RF) coils, and an MRI-compatible superfusion device, we are able to report the first live, mammalian cells-α-motor neurons-visualized with magnetic resonance microscopy (MRM). We are also able to report changes in the apparent diffusion of the stratum oriens within the hippocampus-a layer comprised primarily of pyramidal cell axons and basal dendrites-and the spinal cord's ventral horn following exposure to kainate.How to overcome the cell membrane barriers and achieve release payloads efficiently in the cytoplasm have been major challenges for anticancer drug delivery and therapeutic effects with nanosystems. In this study, bovine serum albumin (BSA) was modified with folate acid and histamine, which was then used as the nanocarrier for the antitumor agent doxorubicin (DOX). The DOX-loaded nanoparticles (DOX/FBH-NPs) were prepared via a crosslinking method, and the release of DOX from these nanoparticles (NPs) exhibited pH/reduction-responsive behaviors in vitro. These NPs interacted with the folate receptor overexpressed on the cell membrane of 4 T1 cells and achieved enhanced endocytosis. XMU-MP-1 Afterwards, these NPs exhibited pH-responsiveness within endo-lysosomes and escaped from endosomes due to the "proton sponge" effect, and then completed release of DOX was triggered by high concentration of glutathione (GSH) in cytoplasm. Thus, DOX/FBH-NPs exhibited excellent cytotoxicity against 4 T1 cells in vitro. Benefited from the enhanced permeability and retention (EPR) effect and folate receptor-mediated endocytosis, these NPs gained satisfied tumor-targeting effects in vivo and efficient delivery of DOX to tumor tissues. As a result, these NPs exhibited enhanced antitumor effects and reduced side effects in vivo. In conclusion, these BSA-based NPs modified with both folate acid and histamine showed enhanced tumor-targeting effects in vivo with good biocompatibility and intracellular pH/reduction-responsive behaviors, providing a promising strategy for the efficient delivery of antitumor agents.Nowadays, novel less-expensive nanoformulations for in situ-controlled and safe delivery of photosensitisers (PSs) against opportunistic pathogens in body-infections areas need to be developed. Antimicrobial photodynamic therapy (aPDT) is a promising approach to treat bacterial infections that are recalcitrant to antibiotics. In this paper, we propose the design and characterization of a novel nanophototherapeutic based on the trade cyclodextrin CAPTISOL® (sulfobutylether-beta-cyclodextrin, SBE-βCD) and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphine tetrakis(p-toluenesulfonate) (TMPyP) to fabricate efficient biocompatible systems for aPDT. Spherical nanoassemblies of about 360 nm based on CAPTISOL®/TMPyP supramolecular complexes with 11 stoichiometry and apparent equilibrium binding constant (Kb ≅ 1.32 × 105 M-1) were prepared with entrapment efficiency of ≅ 100% by simple mixing in aqueous media and freeze-drying. These systems have been characterized by complementary spectroscopy and microscopy technility thus optimizing the PDT effect at the site of action. These results can open routes for in vivo translational studies on nano(photo)drugs and nanotheranostics based on less expensive formulations of CD and PS.Chemotherapy in drug-resistant cancers remains a challenge. Owing to associated poor bioavailability, oral administration of hydrophobic anticancer drugs like paclitaxel has been quite challenging, with the scenario being further complicated by Pgp efflux in drug-resistant tumours. We developed a novel nanocochleates (CPT) system encapsulating paclitaxel (PTX) to treat resistant colon cancer by oral administration. PTX encapsulated nanocochleates (PTX-CPT), made up of phosphatidylserine in size range of 350-600 nm with -20 ± 5.2 mV zeta potential were protected from degradation at acidic gastric pH and showed sustained PTX release over 48 hours under intestinal pH condition. In vitro cytotoxicity studies on HCT-116 & HCT-15 cells (multi-drug resistant) established IC50 value of less then 10 and 69 nM, respectively, which was significantly lower when compared to commercial Taxol formulation. Further, the in vivo efficacy with five oral doses of 30mg/kg PTX-CPT in an HCT-15 drug-resistant colon cancer xenograft mouse model showed more than 25 fold reduction in the tumour growth inhibition as compared to intravenous Taxol which showed just 1.

Autoři článku: Meyerskriver2540 (Woodard Tyler)