Merrillbruus7783

Z Iurium Wiki

Proteins generally tend to aggregate with less desirable properties in numerous solvents, which is one of the major challenges in the development of solvents for functional proteins. This work aims to utilize fluorescence spectroscopy and small angle X-ray scattering (SAXS) to understand the effects of ionic liquids (ILs) on the fluorescence and aggregation behavior of superfolder green fluorescent protein (sfGFP). The studied ILs consisted of four different anions coupled with primary, tertiary and quaternary ammonium cations. The results show that the chromophore fluorescence was generally maintained in 1 mol% IL-water mixtures, then decreased with increasing IL concentration. We primarily employed the pseudo-radius of gyration (pseudo-Rg) to evaluate sfGFP aggregation. The sfGFP was less aggregated with nitrate-based ILs compared to in buffer, and more aggregated in the mesylate-based ILs. Further, we show that the polyol additives of glycerol and glucose in IL-water mixtures slightly decreased the sfGFP propensity to aggregate. Size-exclusion chromatography (SEC)-SAXS was used to characterize the monomeric sfGFP in ethylammonium nitrate (EAN) and triethylammonium mesylate (TEAMs)-water mixtures. The presence of 1 mol% TEAMs maintained the sfGFP fluorescence, promoted the compact structure, but slightly increased the amount of large aggregates, which contrasted with that of EAN.Hydrophobic micro-porous membrane such as polyvinylidene fluoride (PVDF) with excellent thermal-/chemical-stability and low surface energy has received extensive attention in industrial water treatment and sustainable energy conversion. However, undesirable contaminants caused by inevitable proteins or microorganisms adhesion may lead to a rapid loss of separation efficiency, which significantly deteriorate their porous structures and eventually limit their practical performance. Herein, we present a scalable approach for fabricating comb-like copolymer modified PVDF membranes (PVDF-PN@AgNPs) that prevent bacteria from proliferating on the surface and temperature-controlled release of adhered contaminants. Comb-like structured copolymers were imparted to a polydopamine (PDA)-treated PVDF membrane by Michael addition reaction, which enabled a covalent binding of comb-like structured copolymers to the membrane. Such unique structural design of grafted copolymer, containing hydrophilic side chain and temperature-responsive chain backbone, stably prevents bacteria adhesion and provides reversible surface wettability. Therefore, the resultant membranes were evaluated to prevent bacterial adhesion, high touch-killing efficiency and temperature-controlled contaminants release (~99% of protein and ~75% of bacteria). Moreover, with the collapse and stretch of grafted copolymer chain backbone, the synthetic membrane further reversibly adjusted inner micro-porous structure and surface wettability, which eventually helped to achieve variable water fluid transport efficiency. This study not only provides a feasible structural design for stably coping with the challenging of antifouling and subsequent contamination adhesion of PVDF membrane, but also potentially answers the significant gap between lab research advances and practical application, particularly in the industrial membrane field.The parasitic reactions leading to capacity fading and charge loss remain a serious issue for capacitive deionization (CDI). NaTi2(PO4)3 (NTP) has recently emerged as a promising faradaic cathode in hybrid CDI (HCDI) with high Na+ uptake capacity and good Na+ selectivity, but it is still challenged by serious parasitic reactions. Although the irreversible faradaic reactions on carbon electrode are raising growing attention in CDI research field, the parasitic reactions on faradaic materials are seldom studied in HCDI by now. In this work, we evaluated the parasitic reactions of NTP-reduced graphene oxide (rGO) electrode in both three-electrode mode and full-cell HCDI mode. By using deaired electrolyte, the coulombic efficiency of NTP-rGO is significantly enhanced from 75.0% to 98.2% in 3rd cycle, and the capacity retention rate is promoted from 37.5% to 80.3% at the low current density of 0.1 mA g-1 in 100 cycles, suggesting that electrochemical reduction of oxygen and its derived reactions are the main parasitic reactions in NTP-based HCDI. In full-cell HCDI desalination tests, by introducing cation exchange membrane to block the penetration of dissolved oxygen, the parasitic reactions and pH fluctuations are successfully suppressed. The study here provides an insight into understanding and suppressing the parasitic reactions in HCDI, and should be of value to the development of efficient and stable HCDI for practical applications.Sulfide bond incorporated organosilica particles have been broadly applied to versatile biomedical applications, wherein the uniformity of particles and the sulfur content significantly dictate the ultimate performance. Unfortunately, due to the difficulty in controlling the chemical behavior of organosilica precursors in a sol-gel process, challenges still exist in developing a facile and green synthetic approach to fabricate organosilica particles with good dispersity and high sulfur content. In the present work, by extending the classic Stöber method, a surfactant-free synthesis of monodispersed organosilica particles with pure sulfide-bridged silsesquioxane framework chemistry is reported for the first time. By simply tailoring the ethanol-to-water ratio and amount of catalyst, the size of disulfide-bridged organosilica particles can be tuned from ~0.50 to ~1.20 µm. HS173 Moreover, this approach can be employed to prepare tetra-sulfide bridged silica nanoparticles with an extremely high sulfur content of 30.7 wt% and negligible cytotoxicity. Notably, taking advantage of this extended Stöber method, both hydrophilic (methylene blue) and hydrophobic (curcumin) molecules can be in-situ encapsulated into tetra-sulfide bridged silica nanoparticles, whose glutathione-triggered biodegradability is also demonstrated. Collectively, the innovative synthetic approach and organosilica particles developed in this work are expected to open up new opportunities in hybrid materials fabrication and bio-applications.

Autoři článku: Merrillbruus7783 (Hutchison Knight)