Mercadofreedman0472

Z Iurium Wiki

Golimumab has been used for patients with ulcerative colitis (UC) since 2013. However, there is limited data on the effectiveness and safety of the real-world use of golimumab in Asian patients.

This was a multicenter, prospective, observational study. We enrolled patients with moderate-to-severe UC who were administered subcutaneous golimumab at 46 medical centers between May 2014 and November 2019. The primary outcome was the effectiveness and safety of golimumab at week 22. Clinical outcomes and adverse events were assessed according to partial Mayo score at weeks 0, 2, 6, 14, and 22.

A total of 130 patients were included (mean age 45.7±16.0 years). The clinical response/ remission rates at weeks 2, 6, 14, and 22 were 40.4%/22.9%, 56.0%/35.8%, 70.6%/49.5%, and 67.9%/48.6%, respectively. Based on full Mayo score at week 14, clinical response and remission rates were 84.2% and 39.5%, respectively. Mucosal healing rate was 65.8%. In multivariate analysis with logistic regression, longer disease duration was significantly associated with a higher clinical response rate (adjusted odds ratio [aOR], 1.136; 95% confidence interval [CI], 1.006 to 1.282; p=0.040 at week 6; aOR, 1.256; 95% CI, 1.049 to 1.503; p=0.013 at week 22). A higher baseline Mayo endoscopic subscore was significantly associated with a lower clinical response rate at week 6 (aOR, 0.248; 95% CI, 0.089 to 0.692; p=0.008). The incidence of adverse drug reactions was 4.6% (6/130, nine events). No serious unexpected adverse drug reactions or deaths were reported.

Golimumab was effective and safe as an induction and maintenance treatment for Korean patients with moderate-to-severe UC.

Golimumab was effective and safe as an induction and maintenance treatment for Korean patients with moderate-to-severe UC.Clear cell renal cell carcinoma (ccRCC) is one of the most lethal urological malignancies with high tumor heterogeneity, and reliable biomarkers are still needed for its diagnosis and prognosis. WEE family kinases function as key regulators of the G2/M transition, have essential roles in maintaining cellular genomic stability and have the potential to be promising therapeutic targets in various tumors. However, the roles of WEE family kinases in ccRCC remain undetermined. In the present study, we first explored multiple public datasets and found that PKMYT1 was up-regulated in both RCC tumors and cell lines. Expression levels of PKMYT1 were highly associated with pathological stage and grade. Kaplan-Meier curves showed that high PKMYT1 expression was associated with lower overall survival and disease-free survival. Receiver operating characteristic curves revealed that the expression of PKMYT1 could better distinguish ccRCC from normal samples. Functional enrichment analysis demonstrated that cell cycle- related pathways and epithelial to mesenchymal transition (EMT) might be potential mechanisms of PKMYT1 in ccRCC tumorigenesis. Moreover, knockdown of PKMYT1 in vitro attenuated the proliferation, migration and invasion of RCC cell lines, promoted cell apoptosis and prevented the EMT phenotype in vitro. In conclusion, our study demonstrated that PKMYT1 has the potential to act as a diagnostic and prognostic biomarker for RCC patients. Targeting PKMYT1 may be considered as a new potential therapeutic method and direction in RCCs.This study aimed to investigate whether free fatty acids (FFAs) could induce the release of neutrophil extracellular traps (NETs), as well as the mechanism of FFAs-induced NETs in acute lung injury (ALI). FFAs were used to induce NETs production. The reactive oxygen species (ROS) production was detected after FFA and NADPH oxidase inhibitor treatments. The association between FFAs-induced NETs and the activation of p38, ERK, and JNK pathways was investigated. The effect of FFAs-induced NETs on the dendritic cells (DCs) activation and T cell differentiation was investigated. FFAs could induce neutrophils to produce NETs. FFAs significantly promoted ROS production and increased the expression of ERK, p38 and JNK, and treatment of the inhibitors of NAPDH oxidase (DPI), p38 (SB202190), ERK1/2 (U0126) and JNK (SP600125) inhibited FAAs-induced NETs production. FFAs induced NETs could promote DCs activation and consequently led to the differentiation of primary CD4+ T cells into Th1 and Th17 cells and the release of IL-1β, IL-12 and TNF-α. FFAs are capable of inducing NETs via NOX, ERK, p38 and JNK pathways. FFA-induced NETs further lead to DCs activation and T cell differentiation, which can well explain the mechanism of ALI caused by FFAs.The prognosis of glioma is poor as its pathogenesis and mechanisms underlying cisplatin chemoresistance remain unclear. Nucleosome assembly protein 1 like 1 (NAP1L1) is regarded as a hallmark of malignant tumors. However, the role of NAP1L1 in glioma remains unknown. In this study, we aimed to investigate the molecular functions of NAP1L1 in glioma and its involvement in cisplatin chemoresistance, if any. NAP1L1 was found to be upregulated in samples from The Cancer Genome Atlas (TCGA) database. Immunohistochemistry indicated that NAP1L1 and hepatoma-derived growth factor (HDGF) were enhanced in glioma as compared to the para-tumor tissues. High expressions of NAP1L1 and HDGF were positively correlated with the WHO grade, KPS, Ki-67 index, and recurrence. Rosuvastatin in vitro Moreover, NAP1L1 expression was also positively correlated with the HDGF expression in glioma tissues. Functional studies suggested that knocking down NAP1L1 could significantly inhibit glioma cell proliferation both in vitro and in vivo, as well as enhance the sensitivity of glioma cells to cisplatin (cDDP) in vitro. Mechanistically, NAP1L1 could interact with HDGF at the protein level and they co-localize in the cytoplasm. HDGF knockdown in NAP1L1-overexpressing glioma cells significantly inhibited cell proliferation. Furthermore, HDGF could interact with c-Jun, an oncogenic transcription factor, which eventually induced the expressions of cell cycle promoters, CCND1/CDK4/CDK6. This finding suggested that NAP1L1 could interact with HDGF, and the latter recruited c-Jun, a key oncogenic transcription factor, that further induced CCND1/CDK4/CDK6 expression, thereby promoting proliferation and chemoresistance in glioma cells. High expression of NAP1L1 in glioma tissues indicated shorter overall survival in glioma patients.Domestic violence (DV) is a serious public health issue, with 1 in 3 women and 1 in 4 men experiencing some form of partner-related violence every year. Existing research has shown a strong association between alcohol use and DV at the individual level. Accordingly, alcohol use could also be a predictor for DV at the neighborhood level, helping identify the neighborhoods where DV is more likely to happen. However, it is difficult and costly to collect data that can represent neighborhood-level alcohol use especially for a large geographic area. In this study, we propose to derive information about the alcohol outlet visits of the residents of different neighborhoods from anonymized mobile phone location data, and investigate whether the derived visits can help better predict DV at the neighborhood level. We use mobile phone data from the company SafeGraph, which is freely available to researchers and which contains information about how people visit various points-of-interest including alcohol outlets. In such data, a visit to an alcohol outlet is identified based on the GPS point location of the mobile phone and the building footprint (a polygon) of the alcohol outlet. We present our method for deriving neighborhood-level alcohol outlet visits, and experiment with four different statistical and machine learning models to investigate the role of the derived visits in enhancing DV prediction based on an empirical dataset about DV in Chicago. Our results reveal the effectiveness of the derived alcohol outlets visits in helping identify neighborhoods that are more likely to suffer from DV, and can inform policies related to DV intervention and alcohol outlet licensing.Diabetic retinopathy (DR) is the leading clinical cause of blindness in diabetic patients. Mitophagy participates in the pathogenesis of DR. Dynamin related protein 1 (Drp1) is associated with mitophagy. Here, we investigated whether Drp1 can regulate mitophagy to affect the progression of DR. We constructed DR rat model by administration of streptozocin. Primary rat retinal endothelial cells (RECs) were treated with high glucose (HG) as a DR cell model. Drp1 was highly expressed in the retinal tissues of DR rats and HG-treated RECs. Drp1 knockdown inhibited HG-mediated increase of reactive oxygen species (ROS) levels and apoptosis in RECs. Moreover, Drp1 silencing inhibited the expression of autophagy-related proteins LC3-II/LC3-1 and Beclin-1 and reduced LC3 puncta in HG-treated RECs. The expression of mitochondrial marker Tom20 was reduced and the levels of mitophagy were increased in the HG-treated RECs, which was rescued by Drp1 silencing. Drp1 knockdown repressed LC3-II expression in HG-treated RECs, indicating that autophagy flux was inhibited. Rapamycin (autophagy activator) enhanced ROS levels and apoptosis in HG-treated RECs by activating autophagy, which was rescued by Drp1 knockdown. In conclusion, these data demonstrated that Drp1 knockdown repressed apoptosis of rat retinal endothelial cells by inhibiting mitophagy. Thus, this work suggests that targeted regulation of Drp1 may become a treatment for DR.Which sugar transporter regulates sugar accumulation in tubers is largely unknown. Accumulation of reducing sugar (RS) in potato (Solanum tuberosum L.) tubers negatively affects the quality of tubers undergoing the frying process. However, little is known about the genes involved in regulating RS content in tubers at harvest. Here, we have identified two tonoplast sugar transporter (TST) 3-type isoforms (StTST3.1 and StTST3.2) in potato. Quantitative real-time PCR results indicate that StTST3.1 and StTST3.2 possess distinct expression patterns in various potato tissues. StTST3.2 was found to be the expressed TST3-type isoform in tubers. Further subcellular localization analysis revealed that StTST3.2 was targeted to the tonoplast. Silencing of StTST3.2 in potato by stable transformation resulted in significantly lower RS content in tubers at harvest or after room temperature storage, suggesting StTST3.2 plays an important role in RS accumulation in tubers. Accordingly, compared with the unsilenced control, potato chips processed from StTST3.2-silenced tubers exhibited lighter color and dramatically decreased acrylamide production at harvest or after room temperature storage. In addition, we demonstrated that silencing of StTST3.2 has no significant effect on potato growth and development. Thus, suppression of StTST3.2 could be another effective approach for improving processing quality and decreasing acrylamide content in potato tubers.Accumulation of organochlorine pesticides (OCPs) in Antarctic krill (Euphausia superba), a keystone species in the Southern Ocean, is potentially harmful to the Antarctic ecosystem and human health. In the current study, we collected E. superba specimens (including muscle and carapace tissues) from Bransfield Strait in northern Antarctic Peninsula and South Georgia to analyze the profile, influencing factors and mechanisms of OCPs bioaccumulation in them. Results indicated that the biological traits (δ13C, δ15N and lipid contents) of krill were significantly affected by habitat. There may exist growth dilution of OCPs in Antarctic krill and no fresh OCPs input in Antarctica, except for endosulfan I. Based on lipid-normalized concentrations, no significant differences were observed between the two regions at most sampling sites. However, OCP levels showed tissue and sex dependence. Boosted regression trees (BRTs) and partial least squares structural equation models (PLS-SEMs) were built to better investigate the main factors affecting the bioaccumulation of OCPs.

Autoři článku: Mercadofreedman0472 (Schulz Egholm)