Meltonsheehan6459
The peak current was varied with ERL concentration in the range from 4×10-5 to 1.2×10-4 M at OXL-9MGPE. From this, the detection limit 1.4×10 -6 M and limit of quantification (LOQ) 4.7×10-6 M have been attained. Conclusion As a result, OXL-9MGPE was successfully achieved as an electrochemical detector for the electro analysis of ERL via the CV technique. © 2020 The Authors.Purpose Azelaic acid is a natural keratolytic, comedolytic, and antibacterial drug that is used to treat acne. The topical application of azelaic acid is associated with problems such as irritation and low permeability. For dissolving, the problem is that microemulsion (ME) is used as a drug carrier. The aim of this study was to increase the azelaic acid affinity in the follicular pathway through ME. Methods Azelaic acid-loaded MEs were prepared by the water titration method. The properties of the MEs included formulation stability, particle size, drug release profile, thermal behavior of MEs, the diffusion coefficient of the MEs and skin permeability in the non-hairy ear skin and hairy abdominal skin of guinea pig were studied in situ. Results The MEs demonstrated a mean droplet size between 5 to 150 nm. In the higher ratios of surfactant/co-surfactant, a more extensive ME zone was found. All MEs increased the azelaic acid flux through both hairy and non-hairy skin compared with an aqueous solution of azelaic acid as a control. This effect of the ME was mainly dependent on the droplet diffusion coefficient and hydrodynamic radius. MEs with a higher diffusion coefficient demonstrated higher azelaic acid flux through hairy and non-hairy skin. Drug flux through both skins was affected by the surfactant/co-surfactant ratio in that the higher ratio increased the azelaic acid affinity into the follicular pathway. Conclusion Finally, the ME with the highest droplet diffusion coefficient and the lowest surfactant/co-surfactant ratio was the best ME for azelaic acid delivery into the follicular pathway. © 2020 The Authors.Purposes Solubilization of inclusion bodies expressed in E. coli is a critical step during manufacturing of recombinant proteins expressed as inclusion bodies. So far, various methods have been used for solubilization and purification of inclusion body proteins to obtain active proteins with high purity and yield. The aim of this study was to examine the benefit of organic solvents such as alcohols in solubilization of recombinant interferon β-1b inclusion bodies. Methods Effect of important parameters inclusion pH, concentration and type of denaturant and concentration of alcoholic solvents were optimized to formulate a suitable solubilization buffer and investigate their effect on solubilization of interferon β-1b inclusion bodies. Results Our findings showed the acidic pH in the range of 2-3 is more suitable than alkaline pH >12 for solubilization and achieving higher content of interferon β-1beta and pure recombinant protein. We have also demonstrated that 1% SDS acts better than 2M urea to solubilize Inclusion body proteins of interferon β-1b at pH of 2-3. selleck kinase inhibitor The interferon concentration was 2.35 mg per 100 mg IB when we used 40% (v/v) 1-propanol and 20% (v/v) 2-butanol into the buffer solution as well. Conclusion The optimized method provides gentile condition for solubilization of inclusion body at high protein concentration and purity with a degree of retention of native secondary structure which makes this method valuable to be used in production and research area. © 2020 The Authors.Purpose Developing chemotherapy with nanoplatforms offers a promising strategy for effective cancer treatment. In the present study, we propose a novel all-trans retinoic acid (ATRA) grafted poly beta-amino ester (PBAE) copolymer for preparing nanoparticles (NPs). Methods ATRA grafted PBAE (ATRA-g-PBAE) copolymer was synthesized by grafting ATRA to PBAE; it was characterized by proton nuclear magnetic resonance, Fourier transform infrared, and thermogravimetric analysis. ATRA-g-PBAE NPs were prepared by the solvent displacement method. Design-Expert software was employed to optimize size of NPs. The morphology was evaluated by transmission electron microscope, and ultraviolet-visible spectroscopy was applied for drug release. Cytotoxicity was evaluated toward HUVEC cell line, and the 3D collagencytodex model was used to evaluate anti-angiogenic property of PBAE, ATRA, and NPs. Results The optimum size of the NPs was 139.4 ± 1.41 nm. After 21 days, 66.09% ± 1.39 and 42.14% ± 1.07 of ATRA were released from NPs at pH 5.8 and 7.4, respectively. Cell culture studies demonstrated antiangiogenic effects of ATRA-g-PBAE NPs. Anti-angiogenesis IC50 was 0.007 mg/mL for NPs (equal to 0.002 mg/mL of ATRA) and 0.005 mg/mL for free ATRA. Conclusion This study proposes the ATRA-g-PBAE NPs with inherent anti-angiogenic effects as promising carrier for anticancer drugs with purpose of dual drug delivery. © 2020 The Authors.Purpose The wide application of cupric oxide nanoparticles (copper (II) oxide, CuO-NPs) in various fields has increased exposure to the kind of active nanomaterials, which can cause negative effects on human and environment health. Although CuO-NPs were reported to be harmful to human, there is still a lack information related to their toxic potentials. In the present study, the toxic potentials of CuO-NPs were evaluated in the liver (HepG2 hepatocarcinoma) and intestine (Caco-2 colorectal adenocarcinoma) cells. Methods After the characterization of particles, cellular uptake and morphological changes were determined. The potential of cytotoxic, genotoxic, oxidative and apoptotic damage was investigated with several in vitro assays. Results The average size of the nanoparticles was 34.9 nm, about 2%-5% of the exposure dose was detected in the cells and mainly accumulated in different organelles, causing oxidative stress, cell damages, and death. The IC50 values were 10.90 and 10.04 µg/mL by MTT assay, and 12.19 and 12.06 µg/mL by neutral red uptake (NRU) assay, in HepG2 and Caco-2 cells respectively. Apoptosis assumes to the main cell death pathway; the apoptosis percentages were 52.9% in HepG2 and 45.5% in Caco-2 cells. Comet assay result shows that the highest exposure concentration (20 µg/mL) causes tail intensities about 9.6 and 41.8%, in HepG2 and Caco-2 cells, respectively. Conclusion CuO-NPs were found to cause significant cytotoxicity, genotoxicity, and oxidative and apoptotic effects in both cell lines. Indeed, CuO-NPs could be dangerous to human health even if their toxic mechanisms should be elucidated with further studies. © 2020 The Authors.