Melgaardhermann1902

Z Iurium Wiki

Based on such observations, this current work sets new guidelines for the design of metallic alloys for space exploration.Reversible pattern systems, namely pattern memory surfaces, possessing tunable morphology play an important role in the development of smart materials; however, the construction of these surfaces is still extensively challenging because of complicated methodologies or chemical reactions. Herein, a functionalized basement is strategically integrated with a multi-responsive supramolecular network based on hydrogen bonding between aggregation-induced emission luminogens (AIEgens) and copolymers containing amidogen (poly(St-co-Dm) to establish a bilayer system for near-infrared (NIR)-driven memory dual-pattern, where both the fluorescence emission and wrinkled structures can be concurrently regulated by a noninvasive NIR input. The motion of the AIEgens and photo-to-thermal expansion of the modified base allow temporal erasing of the fluorescent wrinkling patterns. Meanwhile, when exposed to 365 nm UV radiation, the fluorescent patterns can be independently regulated through photocyclization. Selleck Lazertinib The fluorescent wrinkling pattern presented herein is successfully demonstrated to promote the level of information security and capacity. This strategy provides a brand-new approach for the development of smart memory interfaces.Germanium (Ge)-based materials have been considered as potential anode materials for sodium-ion batteries owing to their high theoretical specific capacity. However, the poor conductivity and Na+ diffusivity of Ge-based materials result in retardant ion/electron transportation and insufficient sodium storage efficiency, leading to sluggish reaction kinetics. To intrinsically maximize the sodium storage capability of Ge, the nitrogen doped carbon-coated Cu3Ge/Ge heterostructure material (Cu3Ge/Ge@N-C) is developed for enhanced sodium storage. The pod-like structure of Cu3Ge/Ge@N-C exposes numerous active surface to shorten ion transportation pathway while the uniform encapsulation of carbon shell improves the electron transportation, leading to enhanced reaction kinetics. Theoretical calculation reveals that Cu3Ge/Ge heterostructure can offer decent electron conduction and lower the Na+ diffusion barrier, which further promotes Ge alloying reaction and improves its sodium storage capability close to its theoretical value. In addition, the uniform encapsulation of nitrogen-doped carbon on Cu3Ge/Ge heterostructure material efficiently alleviates its volume expansion and prevents its decomposition, further ensuring its structural integrity upon cycling. Attributed to these unique superiorities, the as-prepared Cu3Ge/Ge@N-C electrode demonstrates admirable discharge capacity, outstanding rate capability and prolonged cycle lifespan (178 mAh g-1 at 4.0 A g-1 after 4000 cycles).Resistance to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) of cancer cell remains a key obstacle for clinical cancer therapies. To overcome TRAIL resistance, this study identifies curcumol as a novel safe sensitizer from a food-source compound library, which exhibits synergistic lethal effects in combination with TRAIL on non-small cell lung cancer (NSCLC). SILAC-based cellular thermal shift profiling identifies NRHquinone oxidoreductase 2 (NQO2) as the key target of curcumol. Mechanistically, curcumol directly targets NQO2 to cause reactive oxygen species (ROS) generation, which triggers endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) death receptor (DR5) signaling, sensitizing NSCLC cell to TRAIL-induced apoptosis. Molecular docking analysis and surface plasmon resonance assay demonstrate that Phe178 in NQO2 is a critical site for curcumol binding. Mutation of Phe178 completely abolishes the function of NQO2 and augments the TRAIL sensitization. This study characterizes the functional role of NQO2 in TRAIL resistance and the sensitizing function of curcumol by directly targeting NQO2, highlighting the potential of using curcumol as an NQO2 inhibitor for clinical treatment of TRAIL-resistant cancers.Nanomaterials have achieved several breakthroughs in the capture of circulating tumor cells (CTCs) over the past decades. However, artificial fabrication of label-free nanomaterials used for high-efficiency CTC capture is still a challenge. Through billions of years of evolution and natural selection, various complicated and precise hierarchical structures are developed. Here, a novel fish trap-like "nanocage" structure derived from the natural Chrysanthemum pollen is reported and a nanocage-featured film for the label-free capture of CTCs and CTC clusters is constructed. The nanocage-featured film effectively captures 92% rare cancer cells with a broad spectrum of cancer types, due to the synergistic effect of nanocage-CTC filopodia matching, high contact area, and strong adhesion force between the cancer cells and the nanocage. Furthermore, the nanocage-featured film successfully detects CTCs and CTC clusters in 2 or 4 mL blood taken from 21 cancer patients (stages I-IV) suffering from various types of cancers. This novel, abundant, and economical fish trap-like "nanocage" may provide new perspectives for the application of natural nanomaterials in clinical CTC capture and analysis.High-performance selector devices are essential for emerging nonvolatile memories to implement high-density memory storage and large-scale neuromorphic computing. Device uniformity is one of the key challenges which limit the practical applications of threshold switching selectors. Here, high-uniformity threshold switching HfO2-based selectors are fabricated by using e-beam lithography to pattern controllable Ag nanodots (NDs) with high order and uniform size in the cross-point region. The selectors exhibit excellent bidirectional threshold switching performance, including low leakage current (108 cycles), and fast switching speed (≈75 ns). The patterned Ag NDs in the selector help control the number of Ag atoms diffusing into HfO2 and confine the positions to form reproducible filaments. According to the statistical analysis, the Ag NDs selectors show much smaller cycle-to-cycle and device-to-device variations (CV less then 10%) compared to control samples with nonpatterned Ag thin film. Furthermore, when integrating the Ag NDs selector with resistive switching memory in one-selector-one-resistor (1S1R) structure, the reduced selector variation helps significantly reduce the bit error rate in 1S1R crossbar array.

Autoři článku: Melgaardhermann1902 (McNally Wilcox)