Mejiaulrich5789
The "tubulin code" combines different α/β-tubulin isotypes with several post-translational modifications (PTMs) to generate microtubule diversity in cells. During cell division, specific microtubule populations in the mitotic spindle are differentially modified, but only recently, the functional significance of the tubulin code, with particular emphasis on the role specified by tubulin PTMs, started to be elucidated. This is the case of α-tubulin detyrosination, which was shown to guide chromosomes during congression to the metaphase plate and allow the discrimination of mitotic errors, whose correction is required to prevent chromosomal instability-a hallmark of human cancers implicated in tumor evolution and metastasis. Although alterations in the expression of certain tubulin isotypes and associated PTMs have been reported in human cancers, it remains unclear whether and how the tubulin code has any functional implications for cancer cell properties. Here, we review the role of the tubulin code in chromosome segregation during mitosis and how it impacts cancer cell properties. In this context, we discuss the existence of an emerging "cancer tubulin code" and the respective implications for diagnostic, prognostic and therapeutic purposes.The applicability of the hydride generation (HG) sample introduction technique combined with different spectrochemical detection methods for non-chromatographic speciation of toxic As species, i.e., As(III), As(V), dimethylarsinate (DMA) and monomethylarsonate (MMA), in waters and other environmental, food and biological matrices is presented as a promising tool to speciate As by obviating chromatographic separation. learn more Different non-chromatographic procedures along with speciation protocols reported in the literature over the past 20 year are summarized. Basic rules ensuring species selective generation of the corresponding hydrides are presented in detail. Common strategies and alternative approaches are highlighted. Aspects of proper sample preparation before analysis and the selection of adequate strategies for speciation purposes are emphasized.Among all cancers, glioblastoma (GBM) remains one of the least treatable. One key factor in this resistance is a subpopulation of tumor cells termed glioma stem cells (GSCs). These cells are highly resistant to current treatment modalities, possess marked self-renewal capacity, and are considered key drivers of tumor recurrence. Further complicating an understanding of GBM, evidence shows that the GSC population is not a pre-ordained and static group of cells but also includes previously differentiated GBM cells that have attained a GSC state secondary to environmental cues. The metabolic behavior of GBM cells undergoing plasticity remains incompletely understood. To that end, we probed the connection between GSCs, environmental cues, and metabolism. Using patient-derived xenograft cells, mouse models, transcriptomics, and metabolic analyses, we found that cell state changes are accompanied by sharp changes in metabolic phenotype. Further, treatment with temozolomide, the current standard of care drug for GBM, altered the metabolism of GBM cells and increased fatty acid uptake both in vitro and in vivo in the plasticity driven GSC population. These results indicate that temozolomide-induced changes in cell state are accompanied by metabolic shifts-a potentially novel target for enhancing the effectiveness of current treatment modalities.Polyhydroxyalkanoate (PHA) copolymers show a relatively higher in vivo degradation rate compared to other PHAs, thus, they receive a great deal of attention for a wide range of medical applications. Nanoparticles (NPs) loaded with poorly water-soluble anticancer drug docetaxel (DCX) were produced using poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-co-4HB), copolymers biosynthesised from Cupriavidus malaysiensis USMAA1020 isolated from the Malaysian environment. Three copolymers with different molar proportions of 4-hydroxybutirate (4HB) were used 16% (PHB16), 30% (PHB30) and 70% (PHB70) 4HB-containing P(3HB-co-4HB). Blank and DCX-loaded nanoparticles were then characterized for their size and size distribution, surface charge, encapsulation efficiency and drug release. Preformulation studies showed that an optimised formulation could be achieved through the emulsification/solvent evaporation method using PHB70 with the addition of 1.0% PVA, as stabilizer and 0.03% VitE-TPGS, as surfactant. DCX-loaded PHB70 nanoparticles (DCX-PHB70) gave the desired particle size distribution in terms of average particle size around 150 nm and narrow particle size distribution (polydispersity index (PDI) below 0.100). The encapsulation efficiency result showed that at 30% w/w drug-to-polymer ratio DCX- PHB16 NPs were able to encapsulate up to 42% of DCX; DCX-PHB30 NPs encapsulated up to 46% of DCX and DCX-PHB70 NPs encapsulated up to 50% of DCX within the nanoparticle system. Approximately 60% of DCX was released from the DCX-PHB70 NPs within 7 days for 5%, 10% and 20% of drug-to-polymer ratio while for the 30% and 40% drug-to-polymer ratios, an almost complete drug release (98%) after 7 days of incubation was observed.Biological acceptance is one of the most important aspects of a biomaterial and forms the basis for its clinical use. The aim of this study was a comprehensive biological evaluation (cytotoxicity test, bacterial colonization test, blood platelets adhesion test and transcriptome and proteome analysis of Saos-2 cells after contact with surface of the biomaterial) of biomaterials used in spinal and orthopedic surgery, namely, Ti6Al4V ELI (Extra Low Interstitials), its modified version obtained as a result of melting by electron beam technology (Ti6Al4V ELI-EBT), polyether ether ketone (PEEK) and polished medical steel American Iron and Steel Institute (AISI) 316L (the reference material). Biological tests were carried out using the osteoblasts-like cells (Saos-2, ATCC HTB-85) and bacteria Escherichia coli (DH5α). Results showed lack of cytotoxicity of all materials and the surfaces of both Ti6Al4V ELI and PEEK exhibit a significantly higher resistance to colonization with E. coli cells, while the more porous surface of the same titanium alloy produced by electron beam technology (EBT) is more susceptible to microbial colonization than the control surface of polished medical steel.