Meiermay8466
disabilities service users in the development and delivery of a teaching session to pre-registration nurses Students' perspectives. Nurse Education in Practice, 16(1), 111-118. doi 10.1016/j.nepr.2015.09.010). Nursing schools must incorporate disability education to fully realize its impact and eliminate barriers to transform care.Protein-protein interactions (PPIs) are ubiquitously involved in cellular processes such as gene expression, enzymatic catalysis, and signal transduction. To study dynamic PPIs, real-time methods such as Förster resonance energy transfer and bioluminescence resonance energy transfer can provide high temporal resolution, but they only allow PPI detection in a limited area at a time and do not permit post-PPI analysis or manipulation of the cells. Integration methods such as the yeast two-hybrid system and split protein systems integrate PPI signals over time and allow subsequent analysis, but they lose information on dynamics. To address some of these limitations, an assay named SPARK (Specific Protein Association tool giving transcriptional Readout with rapid Kinetics) has recently been published. Similar to many existing integrators, SPARK converts PPIs into a transcriptional signal. SPARK, however, also adds blue light as a co-stimulus to achieve temporal gating; SPARK only records PPIs during light stimulation. Here, we describe the procedures for using SPARK assays to study a dynamic PPI of interest, including designing DNA constructs and optimization in HEK293T/17 cell cultures. These protocols are generally applicable to various PPI partners and can be used in different biological contexts. © 2021 Wiley Periodicals LLC. Basic Protocol 1 Designing DNA constructs for SPARK Basic Protocol 2 Performing the SPARK assay in HEK293T/17 cell cultures Support Protocol 1 Lentivirus preparation Support Protocol 2 Immunostaining of SPARK components.Optical coherence tomography (OCT) and OCT angiography (OCTA) techniques offer numerous advantages in clinical skin applications but the field of view (FOV) of current commercial systems are relatively limited to cover the entire skin lesion. The typical method to expand the FOV is to apply wide field objective lens. However, lateral resolution is often sacrificed when scanning with these lenses. To overcome this drawback, we developed an automated 3D stitching method for creating high-resolution skin structure and vascular volumes with large field of view, which was realized by montaging multiple adjacent OCT and OCTA volumes. The proposed stitching method is demonstrated by montaging 3 × 3 OCT and OCTA volumes (nine OCT/OCTA volumes as one data set with each volume covers 2.5 cm × 2.5 cm area) of healthy thin and thick skin from six volunteers. The proposed stitching protocol achieves high flexibility and repeatable for all the participants. Moreover, according to evaluation of structural similarity index and feature similarity index, our proposed stitched result has a superior similarity to single scanning protocol in large-scaled. We had also verified its improved performance through assessing metrics of vessel contrast-noise-ratio (CNR) from 2.07 ± 0.44 (single large-scaled scanning protocol) to 3.05 ± 0.51 (proposed 3 × 3 sub-volume stitching method).
To monitor the intraocular proangiogenic and profibrotic cytokine profiles within 7days after intravitreous injection of conbercept (IVC) for patients with proliferative diabetic retinopathy (PDR).
This prospective, randomized controlled, consecutive, comparative study included 157 eyes with PDR. Participant eyes underwent sham IVC or IVC and subsequent vitrectomy at days 2, 3, 4, 5, 6, 7 postinjection. The intraocular cytokines profiles were measured using beaded assay methods.
After IVC, the vascular endothelial growth factor (VEGF)-A level in PDR vitreous decreased rapidly by approximately 10 times at day 2 (p=0.00001) and kept at a low level at days 3, 4, 5, 6, 7 (p<0.001, each compared with IVC-sham group). Similar tendency of the change in VEGF-A was observed in aqueous humour. The level of placenta growth factor (PIGF) in aqueous humour decreased 2days after IVC whereas returned to baseline level after 5days. The vitreous profibrotic cytokines, tissue growth factor (TGF)-β1, TGF-β2, TGF-β3 and connective tissue growth factor did not increase after IVC in each group.
We observed a remarkable and rapid decrease in intraocular VEGF-A, temporal decrease in PIGF from day 2 to day 4, increase in VEGF-C and VEGF-D from day 2 onwards, but no profibrotic switch in PDR eyes after IVC. The findings might suggest that ideal vitrectomy timing might be around 3days after IVC.
We observed a remarkable and rapid decrease in intraocular VEGF-A, temporal decrease in PIGF from day 2 to day 4, increase in VEGF-C and VEGF-D from day 2 onwards, but no profibrotic switch in PDR eyes after IVC. The findings might suggest that ideal vitrectomy timing might be around 3 days after IVC.Conventional microsatellite (simple sequence repeat, SSR) genotyping methods cannot accurately identify polyploid genotypes leading to allele dosage uncertainty, introducing biases in population genetic analysis. Here, a new SSR genotyping method was developed to directly infer accurate polyploid genotypes. The frequency distribution of SSR sequences was obtained based on deep-coverage high-throughput sequencing data. Corrections were performed accounting for the "stutter peak" and amplification efficiency of SSR sequences. Perl scripts and an online SSR genotyping tool "SSRSeq" were provided to process the sequencing data and output genotypes with corrected allele dosages. Hexaploid Camellia oleifera is the dominant woody oilseed crop in China. Understanding the geographical pattern of genetic variation in wild C. selleck compound oleifera is essential for the conservation and utilization of genetic resources. Six wild C. oleifera populations were sampled across geographical ranges in subtropical evergreen broadleaf forests of China. Using 35 SSR markers, the high-throughput sequencing-based SSRSeq method was applied to obtain accurate hexaploid genotypes of wild C. oleifera. The results demonstrated that the new method could resolve allele dosage uncertainty and considerably improve genetic diversity, structure and differentiation analyses for polyploids. The genetic variation patterns of wild C. oleifera across geographical ranges agree with the "central-marginal hypothesis", stating that genetic diversity is high in the central population and declines from the central to the peripheral populations, and genetic differentiation increases from the centre to the periphery. This method and findings can facilitate the utilization of wild C. oleifera genetic resources for the breeding of cultivated C. oleifera.