Medlinbarber4036

Z Iurium Wiki

In addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the anticancer evaluation of green biogenic metal-based nanoparticles.Patients with severe limbal damage and limbal stem cell deficiency are a therapeutic challenge. We evaluated four decellularization protocols applied to the full-thickness and half-thickness porcine limbus, and we used two cell types to recellularize the decellularized limbi. The results demonstrated that all protocols achieved efficient decellularization. However, the method that best preserved the transparency and composition of the limbus extracellular matrix was the use of 0.1% SDS applied to the half-thickness limbus. Recellularization with the limbal epithelial cell line SIRC and human adipose-derived mesenchymal stem cells (hADSCs) was able to generate a stratified epithelium able to express the limbal markers p63, pancytokeratin, and crystallin Z from day 7 in the case of SIRC and after 14-21 days of induction when hADSCs were used. Laminin and collagen IV expression was detected at the basal lamina of both cell types at days 14 and 21 of follow-up. Compared with control native limbi, tissues recellularized with SIRC showed adequate picrosirius red and alcian blue staining intensity, whereas limbi containing hADSCs showed normal collagen staining intensity. These preliminary results suggested that the limbal substitutes generated in this work share important similarities with the native limbus and could be potentially useful in the future.Three-dimensional (3D) printing technology, specifically stereolithography (SLA) technology, has recently created exciting possibilities for the design and fabrication of sophisticated dosages for oral administration, paving a practical way to precisely manufacture customized pharmaceutical dosages with both personalized properties and sustained drug release behavior. However, the sustained drug release achieved in prior studies largely relies on the presence of hydrophilic excipients in the printing formulation, which unfortunately impedes the printability and formability of the corresponding printing formulations. The current study developed and prepared mini-sized oral pellets using the SLA technique and successfully accomplished a hydrophilic excipient-independent drug release behavior. With ibuprofen as the model drug, the customized photopolymerizable printing formulation included polyethylene glycol diacrylate (PEGDA) as a monomer and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator. The produced mini-sized pellets were thoroughly investigated for various factors, including their printability, physical properties, microscopic features, drug content, and drug-release profiles. The drug release profiles from the printed pellets that were larger size (3 mm and 6 mm) followed the Ritger-Peppas model, demonstrating that the release was influenced by both the diffusion of the dissolved drug and by the erosion of the hydrophilic excipients (PEG400). The profiles from the smaller printed pellets (1 mm and 2 mm) followed first release kinetics, not only illustrating that the release was impacted only by drug diffusion, but also indicating that there is a size boundary between the dependent and independent hydrophilic excipients. These results could create practical benefits to the pharmaceutical industry in terms of the design and development personalized dosages using the SLA printing technique with controllable drug release by manipulating size alone.Oligonucleotide therapeutics such as miRNAs and siRNAs represent a class of molecules developed to modulate gene expression by interfering with ribonucleic acids (RNAs) and protein synthesis. These molecules are characterized by strong instability and easy degradation due to nuclease enzymes. To avoid these drawbacks and ensure efficient delivery to target cells, viral and non-viral vectors are the two main approaches currently employed. Viral vectors are one of the major vehicles in gene therapy; however, the potent immunogenicity and the insertional mutagenesis is a potential issue for the patient. Non-viral vectors, such as polymeric nanocarriers, provide a safer and more efficient delivery of RNA-interfering molecules. The aim of this work is to employ PLGA core nanoparticles shell-coated with chitosan oleate as siRNA carriers. An siRNA targeted on HIV-1, directed against the viral Tat/Rev transcripts was employed as a model. The ionic interaction between the oligonucleotide's moieties, negatively charged, and the positive surface charges of the chitosan shell was exploited to associate siRNA and nanoparticles. Non-covalent bonds can protect siRNA from nuclease degradation and guarantee a good cell internalization and a fast release of the siRNA into the cytosolic portion, allowing its easy activation.Curcumin possesses a plethora of interesting pharmacological effects. Unfortunately, it is also characterized by problematic drug delivery and scarce bioavailability, representing the main problem related to the use of this compound. Poor absorption, fast metabolism, and rapid systemic clearance are the most important factors contributing to low curcumin levels in plasma and tissues. Accordingly, to overcome these issues, numerous strategies have been proposed and are investigated in this article. Due to advances in the drug delivery field, we describe here the most promising strategies for increasing curcumin bioavailability, including the use of adjuvant, complexed/encapsulated curcumin, specific curcumin formulations, and curcumin nanoparticles. We analyze current strategies, already available in the market, and the most advanced technologies that can offer a future perspective for effective curcumin formulations. We focus the attention on the effectiveness of curcumin-based formulations in clinical trials, providing a comprehensive summary. Clinical trial results, employing various delivery methods for curcumin, showed that improved bioavailability corresponds to increased therapeutic efficacy. Furthermore, advances in the field of nanoparticles hold great promise for developing curcumin-based complexes as effective therapeutic agents. Summarizing, suitable delivery methods for this polyphenol will ensure the possibility of using curcumin-derived formulations in clinical practice as preventive and disease-modifying therapeutics.Vaginal drug delivery systems can provide a long-term and constant liberation of the active pharmaceutical ingredient even for months. For our experiment, FDM 3D printing was used to manufacture the vaginal ring samples from thermoplastic polyurethane filament, which enables fast manufacturing of complex, personalized medications. 3D printing can be an excellent alternative instead of industrial manufacturing, which is complicated and time-consuming. In our work, the 3D printed vaginal rings were filled manually with jellified metronidazole or chloramphenicol for the treatment of bacterial vaginosis. The need for manual filling was certified by the thermogravimetric and heatflow assay results. The manufactured samples were analyzed by an Erweka USP type II Dissolution Apparatus, and the dissolution profile can be distinguished based on the applied jellifying agents and the API's. All samples were considered non-similar based on the pairwise comparison. The biocompatibility properties were determined by prolonged MTT assay on HeLa cells, and the polymer could be considered non-toxic. Based on the microbiological assay on E. coli metronidazole and chitosan containing samples had bactericidal effects while just metronidazole or just chitosan containing samples bacteriostatic effect. None of these samples showed a fungistatic or fungicide effect against C. albicans. Based on our results, we successfully manufactured 3D printed vaginal rings filled with jellified metronidazole.

Several studies have shown that different biomaterials and hydrogels comprising various bile acids such as chenodeoxycholic acid (CDCA), as well as excipients such as poly-(styrene)-sulphonate (PSS) and poly-(allyl)-amine (PAA), exhibited positive biological effects on encapsulated viable pancreatic β-cells. Hence, this study aimed to investigate whether incorporating CDCA with PSS and PAA will optimise the functions of encapsulated pancreatic islets post-transplantation in Type 1 diabetes (T1D).

Mice were made T1D, divided into two equal groups, and transplanted with encapsulated islets in PSS-PAA (control) or with CDCA-PSS-PAA (treatment) microcapsules. The effects of transplanted microcapsules on blood glucose, inflammation and the bile acid profile were measured post-transplantation.

Compared with control, the treatment group showed better survival rate, improved glycaemic control, and lower inflammatory profile, illustrated by ↓ interleukin 1-β, interleukin-6, interleukin-12, and tumour-necrosis factor-α, and ↓ levels of the bile acid, as well as lithocholic acid in the plasma, liver, large intestine and faeces. The results suggest that CDCA incorporation with PSS-PAA microcapsules exerted beneficial effects on encapsulated islets and resulted in enhanced diabetes treatment, post-transplantation, at the local and systemic levels.

Compared with control, the treatment group showed better survival rate, improved glycaemic control, and lower inflammatory profile, illustrated by ↓ interleukin 1-β, interleukin-6, interleukin-12, and tumour-necrosis factor-α, and ↓ levels of the bile acid, as well as lithocholic acid in the plasma, liver, large intestine and faeces. The results suggest that CDCA incorporation with PSS-PAA microcapsules exerted beneficial effects on encapsulated islets and resulted in enhanced diabetes treatment, post-transplantation, at the local and systemic levels.Drug delivery systems are used to improve the biopharmaceutical properties of curcumin. Our aim was to investigate the effect of a water-soluble 'two in one' polymer containing covalently bonded PEG and βCD moieties (βCPCD) on the solubility and bioavailability of curcumin and compare it to a polymeric β-cyclodextrin (βCDP) cross-linked with epichlorohydrin. Phase-solubility and dynamic light scattering (DLS) experiments showed that the solubility of curcumin increased significantly in 10 m/m % βCPCD and βCDP solutions, but βCPCD-curcumin particles had higher hydrodynamic volume. The formation of the βCPCD-curcumin complex in solution and sedimented phase was confirmed by NMR spectroscopy. Biocompatibility and permeability experiments were performed on Caco-2 cells. Polymers did not show cytotoxicity up to 10 m/m % and βCPCD significantly increased the permeability of curcumin. DLS measurements revealed that among the interaction of polymers with mucin, βCPCD formed bigger aggregates compared to βCDP. Curcumin complexes were lyophilized into capsules and structurally characterized by micro-CT spectroscopy. Drug release was tested in a pH 1.2 medium. Lyophilized complexes had a solid porous matrix and both βCPCD and βCDP showed rapid drug release. βCPCD provides an opportunity to create a swellable, mucoadhesive matrix system for oral drug delivery.Introduction of a new drug to the market is a challenging and resource-consuming process. Predictive models developed with the use of artificial intelligence could be the solution to the growing need for an efficient tool which brings practical and knowledge benefits, but requires a large amount of high-quality data. The aim of our project was to develop quantitative structure-activity relationship (QSAR) model predicting serotonergic activity toward the 5-HT1A receptor on the basis of a created database. The dataset was obtained using ZINC and ChEMBL databases. It contained 9440 unique compounds, yielding the largest available database of 5-HT1A ligands with specified pKi value to date. Furthermore, the predictive model was developed using automated machine learning (AutoML) methods. Panobinostat concentration According to the 10-fold cross-validation (10-CV) testing procedure, the root-mean-squared error (RMSE) was 0.5437, and the coefficient of determination (R2) was 0.74. Moreover, the Shapley Additive Explanations method (SHAP) was applied to assess a more in-depth understanding of the influence of variables on the model's predictions.

Autoři článku: Medlinbarber4036 (Booker Nymann)