Mcphersonwhitaker6828

Z Iurium Wiki

Cervical cancer (CC) is a commonly diagnosed and primary consideration of cancer patient death in female reproductive system malignancy. Cyclin-dependent kinase 12 (CDK12), as a transcription-associated CDK, plays important roles in tumor-promoting behaviors, whereas the underlying mechanisms of CDK12 in CC progression are still obscure. In this report, we investigated the role of CDK12 in cervical cancer. The current study identified CDK12 mRNA and protein expression remarkably upregulated in CC patients. Upregulated CDK12 was closely associated with CC progression and poor prognosis. In vitro and in vivo functional experiments showed that knockdown of CDK12 inhibited cancer cell proliferation and colony formation and promoted apoptosis. Further investigations demonstrated that CDK12 regulated the immune microenvironment to facilitate the progression of CC cells by promoting macrophage infiltration. Meanwhile, we first demonstrated that nuclear import of CDK12 is mediated by TNPO1 and might be a new therapeutic target in oncology. Collectively, this study pointed out the potential of CDK12 to serve as a novel therapeutic target in restricting CC proliferation and cell cycle process through promoting macrophage infiltration.Asthma is a chronic airway disorder associated with aberrant inflammatory and remodeling responses. Angiogenesis and associated vascular remodeling are one of the pathological hallmarks of asthma. The mechanisms underlying angiogenesis in asthmatic airways and its clinical relevance represent a relatively nascent field in asthma when compared to other airway remodeling features. Matrix metalloproteinases (MMPs) are proteases that play an important role in both physiological and pathological conditions. In addition to facilitating extracellular matrix turnover, these proteolytic enzymes cleave bioactive molecules, thereby regulating cell signaling. MMPs have been implicated in the pathogenesis of asthma by interacting with both the airway inflammatory cells and the resident structural cells. MMPs also cover a broad range of angiogenic functions, from the degradation of the vascular basement membrane and extracellular matrix remodeling to the release of a variety of angiogenic mediators and growth factors. This review focuses on the contribution of MMPs and the regulatory role exerted by them in angiogenesis and vascular remodeling in asthma as well as addresses their potential as therapeutic targets in ameliorating angiogenesis in asthma.Propolis is rich in flavonoids and has excellent antitumor activity. However, little is known about the potential effects of propolis on glycolysis in tumor cells. Here, the antitumor effects of propolis against human breast cancer MDA-MB-231 cells in an inflammatory microenvironment stimulated with lipopolysaccharide (LPS) were investigated by assessing the key enzymes of glycolysis. Propolis treatment obviously inhibited MDA-MB-231 cell proliferation, migration and invasion, clone forming, and angiogenesis. Proinflammatory mediators, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6, as well as NLRP3 inflammasomes, were decreased following propolis treatment when compared with the LPS group. Moreover, propolis treatment significantly downregulated the levels of key enzymes of glycolysis-hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase muscle isozyme M2 (PKM2), and lactate dehydrogenase A (LDHA) in MDA-MB-231 cells stimulated with LPS. After treatment with 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, the inhibitory effect of propolis on migration was not significant when compared with the LPS group. In addition, propolis increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential. Taken together, these results indicated that propolis targeted key enzymes of glycolysis to suppress the proliferation of MDA-MB-231 cells in an inflammatory microenvironment. These studies provide a molecular basis for propolis as a natural anticancer agent against breast cancer.β-Catenin is a key molecule of canonical Wnt/β-catenin pathway. Its roles and expression profiles in T cells of tuberculosis (TB) remain unclear. The aim of this study was to explore the role of β-catenin in CD4+ T cells and its expression characteristics in patients with pulmonary tuberculosis (PTB). In this study, CD4+ T cell-specific β-catenin conditional knockout mice (β-CAT-cKO mice) were aerosol infected with Mycobacteria tuberculosis (Mtb) H37RV with wild-type mice as controls. Four weeks after infection, the mRNA expression of IFN-γ, TNF-α, and TCF-7 in the lungs of mice was measured. CD4, CD8, β-catenin, IFN-γ, and TNF-α in mononuclear cells from the lungs and spleens were measured by flow cytometry, and the pathological changes of lungs were also observed. Patients with PTB were enrolled, with blood samples collected and PBMCs isolated. The expressions of β-catenin, IFN-γ, TNF-α, and PD-1 in CD4+ and CD8+ T cells were measured by flow cytometry. Results showed a decreased frequency of and reduced IFN-γ/TNF-α mRNA expression and secretion by CD4+ T cells in the lungs of infected β-CAT-cKO mice compared with infected wild-type controls, and only slightly more inflammatory changes were observed in the lungs. β-catenin expressions in CD4+ and CD8+ T cells were significantly decreased in blood cells of patients with severe PTB compared with those in mild PTB. The stimulation of peripheral blood mononuclear cells (PBMCs) with lithium chloride (LiCl), a stimulant of β-catenin, resulted in the increase in CD4+ T cell frequency, as well as their secretion of IFN-γ and TNF-α. β-Catenin demonstrated a moderately positive correlation with PD-1 in CD4+ T cells. β-Catenin along with PD-1 and IFN-γ in CD4+ T cells had a high correlation with those in CD8+ T cells. In conclusion, β-catenin may be involved in the regulation of Th1 response and CD4+ T cell frequency in TB.As the most prevalent internal eukaryotic modification, N6-methyladenosine (m6A) is installed by methyltransferases, removed by demethylases, and recognized by readers. However, there are few studies on the role of m6A in clear cell renal cell carcinoma (ccRCC). In this study, we researched the RNA-seq transcriptome data of ccRCC in the TCGA dataset and used bioinformatics analyses to detect the relationship between m6A RNA methylation regulators and ccRCC. First, we compared the expression of 18 m6A RNA methylation regulators in ccRCC patients and normal tissues. Then, data from ccRCC patients were divided into two clusters by consensus clustering. LASSO Cox regression analysis was used to build a risk signature to predict the prognosis of patients with ccRCC. An ROC curve, univariate Cox regression analysis, and multivariate Cox regression analysis were used to verify this risk signature's predictive ability. Then, we internally validated this signature by random sampling. Finally, we explored the role of the genes in the signature in some common pathways. Gene distribution between the two subgroups was different; cluster 2 was gender-related and had a worse prognosis. IGF2BP3, IGF2BP2, HNRNPA2B1, and METTL14 were chosen to build the risk signature. The overall survival of the high- and low-risk groups was significantly different (p = 7.47e - 12). The ROC curve also indicated that the risk signature had a decent predictive significance (AUC = 0.72). These results imply that the risk signature has a potential value for ccRCC treatment.The E3 deubiquitinating enzyme ubiquitin-specific proteolytic enzyme 21 (USP21) plays vital roles in physiological activities and is required for Treg-cell-mediated immune tolerance. Using a murine model infected with Schistosoma japonicum, we observed that there were more cercariae developed into adults and more eggs deposited in the livers of the USP21fl/flFOXP3Cre (KO) mice. However, immunohistochemistry showed that the degree of egg granuloma formation and liver fibrosis was reduced. In USP21fl/flFOXP3Cre mice, levels of IFN-gamma, IL-4, anti-soluble egg antigen (SEA) IgG and anti-soluble worm antigen preparation (SWAP) IgG increased in blood, as determined using ELISAs and multiplex fluorescent microsphere immunoassays, while the levels of IL-10, lL-17A, IL-23, IL-9, and anti-SEA IgM decreased. In addition, the levels of the USP21 protein and mRNA in the liver and spleen of KO mice decreased. We further observed increased Th1 responses amplified by Tregs (regulatory T cells) and compromised Th17 responses, which alleviated the liver immunopathology. We speculated that these changes were related to polarization of Th1-like Tregs. Our results revealed the roles of USP21 in Treg-cell-mediated regulation of immune interactions between Schistosoma and its host. USP21 may have potential for regulating hepatic fibrosis in patients with schistosomiasis.Colorectal cancer (CRC) has two major subtypes, microsatellite instability (MSI) and microsatellite stability (MSS) based on the genomic instability. In this study, using computational programs, we identified 9 master transcription factors (TFs) based on epigenomic profiling in MSS CRC samples. Notably, unbiased gene set enrichment analysis (GSEA) showed that several master TFs were strongly associated with immune-related functions in TCGA MSS CRC tissues, such as interferon gamma (IFN-γ) and interferon alpha (IFN-α) responses. Focusing to the top candidate, ASCL2, we found that CD8+ T cell infiltration was low in ASCL2 overexpressed MSS CRC samples. Compared with other gastrointestinal (GI) cancers (gastric cancer, MSI CRC, and esophageal cancer), ASCL2 is specifically upregulated in MSS CRC. Moreover, we identified 28 candidate genes in IFN-γ and IFN-α response pathways which were negatively correlated with ASCL2. Together, these results link transcriptional dysregulation with the immune evasion in MSS CRC, which may advance the understanding of immune resistance and contribute to developing novel treatments of MSS CRC.[This corrects the article DOI 10.1155/2020/6968595.].Systemic inflammation plays a crucial role in formation of various pathological conditions, including sepsis, burns, and traumas. The main effector cells participating in progression of systemic inflammation response and sepsis are monocytes, which regulate both innate and acquired immunity via phagocytosis, synthesis of cytokines and chemokines, antigen presentation, and lymphocyte activation. Thus, the monocytes are considered as a link between innate and acquired immunity. The monocyte subpopulations taken into consideration in the study essentially determine the progression of systemic inflammation and could serve as targets for therapeutic intervention. The complexity of the analysis of pathophysiology of systemic inflammation lies in its high variability conditioned by individual peculiarities of the patients and inflammation progression specifications. To overcome these limitation, model of experimental endotoxemia (EE) is used. The results of EE, in turn, cannot be directly extrapolated on patients with the systemic inflammatory response. This review is dedicated to discussing the role of monocyte subpopulations in progression of systemic inflammation/sepsis and EE.

Autoři článku: Mcphersonwhitaker6828 (Rhodes Lott)