Mcphersonabel4716

Z Iurium Wiki

Glycogen synthase kinase-3 (GSK-3) is a positive regulator of PD-1 expression in CD8+ T cells and GSK-3 inhibition enhances T cell function and is effective in the control of tumor growth. GSK-3 has two co-expressed isoforms, GSK-3α and GSK-3β. Using conditional gene targeting, we demonstrate that both isoforms contribute to T cell function to different degrees. Gsk3b-/- mice suppressed tumor growth to the same degree as Gsk3a/b-/- mice, whereas Gsk3a-/- mice behaved similarly to wild-type, revealing an important role for GSK-3β in regulating T cell-mediated anti-tumor immunity. The individual GSK-3α and β isoforms have differential effects on PD-1, IFNγ, and granzyme B expression and operate in synergy to control PD-1 expression and the infiltration of tumors with CD4 and CD8 T cells. Our data reveal a complex interplay of the GSK-3 isoforms in the control of tumor immunity and highlight non-redundant activity of GSK-3 isoforms in T cells, with implications for immunotherapy.The Southern Cone of South America (SCSA) is a key region for investigations about the peopling of the Americas. However, little is known about the eastern sector, the Argentinian Pampas. We analyzed 18 mitochondrial genomes-7 of which are novel-from human skeletal remains from 3 Early to Late Holocene archaeological sites. The Pampas present a distinctive genetic makeup compared to other Middle to Late Holocene pre-Columbian SCSA populations. We also report the earliest individuals carrying SCSA-specific mitochondrial haplogroups D1j and D1g from Early and Middle Holocene, respectively. Using these deep calibration time points in Bayesian phylogenetic reconstructions, we suggest that the first settlers of the Pampas were part of a single and rapid dispersal ∼15,600 years ago. Finally, we propose that present-day genetic differences between the Pampas and the rest of the SCSA are due to founder effects, genetic drift, and a partial population replacement ∼9,000 years ago.Flexible viscoelastic sensors have gained significant attention in wearable devices owing to their exceptional strain-dependent electrical resistance. FDI-6 manufacturer Most of the strain sensors are elastic composites, thus the internal stress is often preserved during the deformation when they are attached to the uneven target. Therefore, there is a pressing need for viscoelastic composites with highly self-adapted electromechanical properties sensitive to multiexternal circumstances. This work reports a liquid-metal-filled magnetorheological plastomer (LMMRP) that shows a high response behavior to the external stimulus such as magnetic field, temperature, and force. The shape-deformable LMMRP can transform from an insulator to a conductor under applying a magnetic field, thus the further viscoelastic sensor possesses a magnetic field "on-off" switch effect. The microstructure-dependent magnetic/thermal/mechanical-electrical coupling characteristics are investigated, and several proof-of-concept sensor applications, such as magnetic control, environment recognition, and motion monitoring, are demonstrated. These LMMRP composites show a broad potential in flexible sensors and soft electronics.The recognition of fungi by intracellular NOD-like receptors (NLRs) induces inflammasome assembly and activation. Although the NLRC4 inflammasome has been extensively studied in bacterial infections, its role during fungal infections is unclear. Paracoccidioidomycosis (PCM) is a pathogenic fungal disease caused by Paracoccidioides brasiliensis. Here, we show that NLRC4 confers susceptibility to experimental PCM by regulating NLRP3-dependent cytokine production and thus protective effector mechanisms. Early after infection, NLRC4 suppresses prostaglandin E2 production, and consequently reduces interleukin (IL)-1β release by macrophages and dendritic cells in the lungs. IL-1β is required to control fungal replication via induction of the nitric oxide synthase 2 (NOS2) pathway. At a later stage of the disease, NLRC4 impacts IL-18 release, dampening robust CD8+IFN-γ+ T cell responses and enhancing mortality of mice. These findings demonstrate that NLRC4 promotes disease by regulating the production of inflammatory cytokines and cellular responses that depend on the NLRP3 inflammasome activity.The Ni-Fe battery is a promising alternative to lithium ion batteries due to its long life, high reliability, and eco-friendly characteristics. However, passivation and self-discharge of the iron anode are the two main issues. Here, we demonstrate that controlling the valence state of the iron and coupling with carbon can solve these problems. We develop a mesostructured carbon/Fe/FeO/Fe3O4 hybrid by a one-step solid-state reaction. Experimental evidence reveals that the optimized system with three valence states of iron facilitates the redox kinetics, while the carbon layers can effectively enhance the charge transfer and suppress self-discharge. The hybrid anode exhibits high specific capacity of 604 mAh⋅g-1 at 1 A⋅g-1 and high cyclic stability. A Ni-Fe button battery is fabricated using the hybrid anode exhibits specific device energy of 127 Wh⋅kg-1 at a power density of 0.58 kW⋅kg-1 and maintains good capacity retention (90%) and coulombic efficiency (98.5%).Here it is demonstrated that electricity can be continuously generated by pressing organic diodes with the poly(3-hexylthiophene) (P3HT) layers which are sandwiched between indium-tin oxide and aluminum (Al) electrodes. The optimized single devices with the 150-nm-thick P3HT layers are able to generate 60 μV and 45 μA by pressing, while persistent voltage (50 μV) and current (45 μA) generations are achieved by continuous pressing for 7 days. The charge generation by pressing of organic diodes is supported by the current density-voltage and capacitance measurements, while the friction of pi-orbital electrons in the P3HT chains upon pressing is proposed for the mechanism of persistent electricity generation. Organic diode modules with 14 sub-cells in series deliver ca. 0.4 V and ca. 20 μW. The present technology is expected to pave the way for next-generation energy conversion devices, organic gravity nanogenerators that enable continuous electricity generation by gravitational forces.Here we report a molecular docking-based approach to identify small molecules that can target the β-catenin (β-cat)-TCF4 protein-protein interaction (PPI), a key effector complex for nuclear Wnt signaling activity. Specifically, we developed and optimized a computational model of β-cat using publicly available β-cat protein crystal structures, and existing β-cat-TCF4 interaction inhibitors as the training set. Using our computational model to an in silico screen predicted 27 compounds as good binders to β-cat, of which 3 were identified to be effective against a Wnt-responsive luciferase reporter. In vitro functional validation experiments revealed GB1874 as an inhibitor of the Wnt pathway that targets the β-cat-TCF4 PPI. GB1874 also affected the proliferation and stemness of Wnt-addicted colorectal cancer (CRC) cells in vitro. Encouragingly, GB1874 inhibited the growth of CRC tumor xenografts in vivo, thus demonstrating its potential for further development into therapeutics against Wnt-associated cancer indications.Ivacaftor (VX-770) was the first cystic fibrosis transmembrane conductance regulator (CFTR) modulatory drug approved for the treatment of patients with cystic fibrosis. Electron cryomicroscopy (cryo-EM) studies of detergent-solubilized CFTR indicated that VX-770 bound to a site at the interface between solvent and a hinge region in the CFTR protein conferred by transmembrane (tm) helices tm4, tm5, and tm8. We re-evaluated VX-770 binding to CFTR in biological membranes using photoactivatable VX-770 probes. One such probe covalently labeled CFTR at two sites as determined following trypsin digestion and analysis by tandem-mass spectrometry. One labeled peptide resides in the cytosolic loop 4 of CFTR and the other is located in tm8, proximal to the site identified by cryo-EM. Complementary data from functional and molecular dynamic simulation studies support a model, where VX-770 mediates potentiation via multiple sites in the CFTR protein.Large-scale mapping of antigens and epitopes is pivotal for developing immunotherapies but challenging, especially for eukaryotic pathogens, owing to their large genomes. Here, we developed an integrated platform for genome phage display (gPhage) to show that unbiased libraries of the eukaryotic parasite Trypanosoma cruzi enable the identification of thousands of antigens recognized by serum samples from patients with Chagas disease. Because most of these antigens are hypothetical proteins, gPhage provides evidence of their expression during infection. We built and validated a comprehensive map of Chagas disease antibody response to show how linear and putative conformation epitopes, many rich in repetitive elements, allow the parasite to evade a buildup of neutralizing antibodies directed against protein domains that mediate infection pathogenesis. Thus, the gPhage platform is a reproducible and effective tool for rapid simultaneous identification of epitopes and antigens, not only in Chagas disease but perhaps also in globally emerging/reemerging acute pathogens.The high variability and intermittency of wind and solar farms raise questions of how to operate electrolyzers reliably, economically, and sustainably using predominantly or exclusively variable renewables. To address these questions, we develop a comprehensive cost framework that extends to include factors such as performance degradation, efficiency, financing rates, and indirect costs to assess the economics of 10 MW scale alkaline and proton-exchange membrane electrolyzers to generate hydrogen. Our scenario analysis explores a range of operational configurations, considering (i) current and projected wholesale electricity market data from the Australian National Electricity Market, (ii) existing solar/wind farm generation curves, and (iii) electrolyzer capital costs/performance to determine costs of H2 production in the near (2020-2040) and long term (2030-2050). Furthermore, we analyze dedicated off-grid integrated electrolyzer plants as an alternate operating scenario, suggesting oversizing renewable nameplate capacity with respect to the electrolyzer to enhance operational capacity factors and achieving more economical electrolyzer operation.Long non-coding RNAs (lncRNAs) have been demonstrated to influence numerous biological processes, being strongly implicated in the maintenance and physiological function of various tissues including the heart. The lncRNA OIP5-AS1 (1700020I14Rik/Cyrano) has been studied in several settings; however its role in cardiac pathologies remains mostly uncharacterized. Using a series of in vitro and ex vivo methods, we demonstrate that OIP5-AS1 is regulated during cardiac development in rodent and human models and in disease settings in mice. Using CRISPR, we engineered a global OIP5-AS1 knockout (KO) mouse and demonstrated that female KO mice develop exacerbated heart failure following cardiac pressure overload (transverse aortic constriction [TAC]) but male mice do not. RNA-sequencing of wild-type and KO hearts suggest that OIP5-AS1 regulates pathways that impact mitochondrial function. Thus, these findings highlight OIP5-AS1 as a gene of interest in sex-specific differences in mitochondrial function and development of heart failure.

Autoři článku: Mcphersonabel4716 (Stougaard Bak)