Mcmillanpike8308
Objectives Autonomic dysfunction is a common symptom of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis; however, it has been poorly researched. The purpose of this study was to compare the clinical features, tumor occurrence, intensive care unit (ICU) admission, mechanical ventilation, imaging assessment, cerebrospinal fluid examination, disease severity, and immunotherapy in patients with anti-NMDAR encephalitis with or without autonomic dysfunction. Methods A retrospective study of anti-NMDAR encephalitis patients diagnosed between January 2016 and April 2020 was performed at the First Affiliated Hospital of Zhengzhou University. Patients were divided into two groups according to whether they had autonomic dysfunction, and their clinical features, treatment, and prognosis were compared. Results A total of 119 patients with anti-NMDAR encephalitis were included in this study. Seventy-three patients (61.3%) had autonomic dysfunction, while the remaining 46 (38.7%) did not. Sinus tachycardia (69.9%) wup who underwent ≥2 immunotherapies was also higher than that in the group without autonomic dysfunction (P less then 0.001). Conclusion Sinus tachycardia is the most common type of autonomic dysfunction in anti-NMDAR encephalitis. ENOblock Compared to patients without autonomic dysfunction, those with autonomic dysfunction had a higher incidence of epilepsy, involuntary movements, decreased consciousness, pulmonary infections, abnormal liver function, ICU admissions, and mechanical ventilation; moreover, the severity of the disease was greater, and their prognosis worse. Therefore, such patients require intensive immunotherapy.Fingolimod represents a highly effective disease-modifying drug in patients with active relapsing-remitting multiple sclerosis (RRMS). Its immunosuppressive effects can mediate adverse events like increased risk of cancer development or appearance of opportunistic infections. Progressive multifocal leukoencephalopathy (PML)-representing a severe opportunistic infection-has been only infrequently described during Fingolimod treatment. Here, we present a case of a 63-year-old women with pre-diagnosed RRMS who presented with new multiple cerebral lesions in a routine MRI scan, also including a tumefactive lesion in the left parietal lobe, eventually leading to the diagnosis of brain metastases derived by an adenocarcinoma of the lung. Additionally, a JCV-DNA-PCR in the cerebrospinal fluid revealed positive results, corresponding to a paraclinical progressive multifocal leukoencephalopathy. In conclusion, adverse events potentially associated with immunosuppression can occur during Fingolimod treatment. In this context, the occurrence of cancer and opportunistic infections should be carefully monitored. Here, we report a case in which JCV-DNA-PCR in the cerebrospinal fluid suggests asymptomatic PML and simultaneously lung cancer brain metastases developed. While it is rather unlikely that either event occurred as an adverse event of fingolimod treatment, a contributing effect cannot be formally excluded.[This corrects the article DOI 10.3389/fneur.2020.583101.].Background The integrity of the motor system can be examined by applying navigated transcranial magnetic stimulation (nTMS) to the cortex. The corresponding motor-evoked potentials (MEPs) in the target muscles are mirroring the status of the human motor system, far beyond corticospinal integrity. Commonly used time domain features of MEPs (e.g., peak-to-peak amplitudes and onset latencies) exert a high inter-subject and intra-subject variability. Frequency domain analysis might help to resolve or quantify disease-related MEP changes, e.g., in brain tumor patients. The aim of the present study was to describe the time-frequency representation of MEPs in brain tumor patients, its relation to clinical and imaging findings, and the differences to healthy subject. Methods This prospective study compared 12 healthy subjects with 12 consecutive brain tumor patients (with and without a paresis) applying nTMS mapping. Resulting MEPs were evaluated in the time series domain (i.e., amplitudes and latencies). After transt evaluation indicates that brain tumors might affect cortical physiology and the responsiveness of the cortex to TMS resulting in a temporal dispersion of the corticospinal transmission.Aim To systematically identify and critically appraise studies that investigate the autonomic characteristics of Sudden Unexpected Death in Epilepsy (SUDEP) in the pediatric population. We also wanted to explore how this information would be relevant to the management of epilepsy in patients with Rett Syndrome. Method Using PRISMA guidelines, a systematic review of PubMed, Scopus, Cochrane, PsycINFO, Embase, and Web of Science databases was performed to identify eligible studies. After extracting data from the included studies, a thematic analysis was undertaken to identify emerging themes. A quality appraisal was also done to assess the quality of the included studies. Results The systematic search revealed 41 records, and 15 full-text articles on the autonomic characteristics of SUDEP in children were included in the final analysis. Following thematic analysis, three themes were identified (I) modulation in sympathovagal tone, (II) pre- and post-ictal autonomic changes, and (III) other markers of autonomic dysregulation in children with epilepsy. Modulation in sympathovagal tone emerged as the theme with the highest frequency followed by pre- and post-ictal autonomic changes. While the themes provide additional insight into the management of epilepsy in the Rett Syndrome population, the quality of evidence concerning the autonomic characteristics of SUDEP in the pediatric population was low and underscores the importance of much needed research in this area. Conclusion The mechanism of SUDEP in the pediatric population is complex and involves an interplay between several components of the autonomic nervous system. While direct clinical inferences regarding pediatric SUDEP could not be made, the thematic analysis does suggest that in vulnerable populations such as Rett Syndrome, where there is already a pervasive autonomic dysregulation, pro-active surveillance of the autonomic profile in this patient group would be useful to better manage epilepsy and reduce the SUDEP risk.