Mcmanuslundgren1719

Z Iurium Wiki

Further, AD-associated hyper-phosphorylation of eukaryotic elongation factor 2 (eEF2) was blunted with selective AMPKα1 inhibition. Our findings reveal isoform-specific roles of AMPKα in AD pathophysiology, thus providing insights into potential therapeutic strategy for AD and related dementia syndromes.Monocyte-derived dendritic cells (moDCs) have been implicated in the pathogenesis of autoimmunity, but the molecular pathways determining the differentiation potential of these cells remain unclear. In this paper, we report that microRNA (miR)-148a serves as a critical regulator for moDC differentiation. Firstly, miR-148a deficiency impaired the moDC development in vitro and in vivo. Following mechanism study manifested that MAFB, a transcription factor that hampers moDC differentiation, was a direct target of miR-148a. In addition, promoter study further identified that miR-148a could be transcriptionally induced by PU.1, which is crucial for moDC generation. MiR-148a ablation eliminated the inhibition of PU.1 on MAFB. Furthermore, we found that miR-148a increased in monocytes from psoriasis patients, and miR-148a deficiency or intradermal injection of antagomir-148a immensely alleviated the development of psoriasis-like symptoms in a psoriasis-like mouse model. Therefore, these results identify a pivotal role for PU.1-miR-148a-MAFB circuit in moDC differentiation and suggest a potential therapeutic avenue for autoimmunity.Lessons from history underline the importance of having direct lines of communication to and from public health officials, who must remain free from policital bias in times of crisis.Ischemic retinopathies are major causes of blindness worldwide. Local hypoxia created by loss of vascular supply leads to tissue injury and aberrant neovascularization in the retina. There is a great need for therapies that enhance revascularization of hypoxic neuroretinal tissue. To test the therapeutic feasibility of human-induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs) for the treatment of ischemic retinopathies, we compared the angiogenic potential of hiPSC-ECs with mature human retinal endothelial cells (HRECs) in response to hypoxia. hiPSC-ECs formed more robust and complex vascular networks in collagen gels, whereas HRECs displayed minimal sprouting. The cells were further tested in the mouse oxygen-induced retinopathy (OIR) model. Retinas with hiPSC-EC injection showed colocalization with host vessels, whereas HRECs lacked such responses. hiPSC-ECs markedly reduced vaso-obliteration and pathological neovascularization. This beneficial effect of hiPSC-ECs was explained by the stromal cell-derived factor-1a (SDF1a)/CXCR4 axis; hiPSC-ECs exhibited much higher cell-surface expression of CXCR4 than HRECs and greater chemotaxis toward SDF1a-embedded 3D collagen hydrogel. Furthermore, treatment with neutralizing antibody to CXCR4 abolished recruitment of hiPSCs in the OIR model. These findings suggest superior angiogenic potential of hiPSC-ECs under hypoxia and underscore the importance of SDF1a/CXCR4 in the reparative function of hiPSC-ECs in ischemic diseases.Duchenne muscular dystrophy (DMD) is a chronic muscle disease characterized by poor myogenesis and replacement of muscle by extracellular matrix. Despite the shared genetic basis, severity of these deficits varies among patients. Telaglenastat datasheet One source of these variations is the genetic modifier that leads to increased TGF-β activity. While anti-TGF-β therapies are being developed to target muscle fibrosis, their effect on the myogenic deficit is underexplored. Our analysis of in vivo myogenesis in mild (C57BL/10ScSn-mdx/J and C57BL/6J-mdxΔ52) and severe DBA/2J-mdx (D2-mdx) dystrophic models reveals no defects in developmental myogenesis in these mice. However, muscle damage at the onset of disease pathology, or by experimental injury, drives up TGF-β activity in the severe, but not in the mild, dystrophic models. Increased TGF-β activity is accompanied by increased accumulation of fibroadipogenic progenitors (FAPs) leading to fibro-calcification of muscle, together with failure of regenerative myogenesis. Inhibition of TGF-β signaling reduces muscle degeneration by blocking FAP accumulation without rescuing regenerative myogenesis. These findings provide in vivo evidence of early-stage deficit in regenerative myogenesis in D2-mdx mice and implicates TGF-β as a major component of a pathogenic positive feedback loop in this model, identifying this feedback loop as a therapeutic target.Epstein-Barr Virus (EBV) is a ubiquitous virus linked to a variety of lymphoid and epithelial malignancies. In solid organ and hematopoietic stem cell transplant recipients, EBV is causally associated with posttransplant lymphoproliferative disorder (PTLD), a group of heterogeneous lymphoid diseases. EBV+ B cell lymphomas that develop in the context of PTLD are generally attributed to the immunosuppression required to promote graft survival, but little is known regarding the role of EBV genome diversity in the development of malignancy. We deep-sequenced the EBV genome from the peripheral blood of 18 solid organ transplant recipients, including 6 PTLD patients. Sequences from 6 EBV+ spontaneous lymphoblastoid B cell lines (SLCL) were similarly analyzed. The EBV genome from PTLD patients had a significantly greater number of variations than EBV from transplant recipients without PTLD. Importantly, there were 15 nonsynonymous variations, including 8 in the latent cycle gene EBNA3C that were associated with the development of PTLD. One of the nonsynonymous variations in EBNA3C is located within a previously defined T cell epitope. These findings suggest that variations in the EBV genome can contribute to the pathogenesis of PTLD.Systemic juvenile idiopathic arthritis (sJIA) begins with fever, rash, and high-grade systemic inflammation but commonly progresses to a persistent afebrile arthritis. The basis for this transition is unknown. To evaluate a role for lymphocyte polarization, we characterized T cells from patients with acute and chronic sJIA using flow cytometry, mass cytometry, and RNA sequencing. Acute and chronic sJIA each featured an expanded population of activated Tregs uncommon in healthy controls or in children with nonsystemic JIA. In acute sJIA, Tregs expressed IL-17A and a gene expression signature reflecting Th17 polarization. In chronic sJIA, the Th17 transcriptional signature was identified in T effector cells (Teffs), although expression of IL-17A at the protein level remained rare. Th17 polarization was abrogated in patients responding to IL-1 blockade. These findings identify evolving Th17 polarization in sJIA that begins in Tregs and progresses to Teffs, likely reflecting the impact of the cytokine milieu and consistent with a biphasic model of disease pathogenesis.

Autoři článku: Mcmanuslundgren1719 (Grimes Breen)