Mcleodbarnett0021

Z Iurium Wiki

We quantify directly here for the first time the extents of interactions of two different anthracycline drugs with pure and mixed lipid monolayers with respect to the surface pressure and elucidate differences in the resulting interaction mechanisms. The work concerns interactions of doxorubicin (DOx) and idarubicin (IDA) with monolayers of the zwitterionic DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and negatively charged DMPS (1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (sodium salt)) as well as a 73 mixture of the two lipids. These drugs are used in current cancer treatments, while the lipid systems were chosen as phosphocholines are the major lipid component of healthy cell membranes, and phosphoserines are the major lipid component that is externalized into the outer leaflet of cancerous cell membranes. It is shown that DOx interacts with DMPS monolayers to a greater extent than with DMPC monolayers by lower limits of a factor of 5 at a surface pressure of 10 mN/m and a factor of 12 at 30 mN/m. ngmuir technique, these advances were made as a result of direct measurements of the interfacial composition, structure and morphology using two different implementations of neutron reflectometry and Brewster angle microscopy. The results provide new insight into key processes that determine the uptake of drugs such as limited drug penetration through cell membranes by passive diffusion as well as activation of drug removal mechanisms related to multidrug resistance.Capacitive deionization (CDI) is an emerging desalination technology with an environmental-friendly operation and energy-efficient properties. However, activated carbon (AC) used for CDI electrode does not have a significant preference toward anions, leading to unnecessary energy consumption for treating fluoridated water. Hence, we achieved selective fluoride removal in CDI system using a reduced graphene oxide/hydroxyapatite composite (rGO/HA), a novel fluoride selective electrode material. The results showed that the rGO/HA electrode has 4.9 times higher fluoride removal capacity than the AC electrode from a ternary solution consisting of fluoride, chloride, and nitrate ions. The fluoride removal capacity increased when the adequate voltage was applied. Furthermore, the rGO/HA electrode exhibited stability and reusability without significant capacity loss even after 50-cycle operation, maintaining about 0.21 mmol g-1 of fluoride removal capacity and approximately 96% of regeneration efficiency. Thus, this study suggests a novel electrode material for effective and selective fluoride removal in the CDI system.The adsorption of pollutants on carbonaceous environmental media has been widely studied via batch sorption experiments and spectroscopic characterization. However, the molecular interactions between pollutants and interfacial sites on carbonaceous materials have only been indirectly investigated. To comprehend the adsorption mechanisms in situ, we applied atomic force microscopy force spectroscopy (AFM-FS) to quantitatively determine the molecular interactions between typical amines (methylamines and N-methylaniline) and the surface of highly oriented pyrolytic graphite (HOPG), which was supported by the single molecule interaction derived from density functional theory and batch adsorption experiments. This method achieved direct and in situ characterization of the molecular interactions in the adsorption process. The molecular interactions between the amines and the adsorption sites on the graphite surface were affected by pH and peaked at pH 7 due to strong cation-π interactions. DNA Damage inhibitor When the pH was 11, the attractions were weak due to a lack of cation-π interaction, whereas, when the pH was 3, the competitive occupation of hydronium ions on the surface reduced the attraction between the amines and HOPG. Based on AFM-FS, the single molecule force of methylamine and N-methylaniline on the graphite surface was estimated to be 0.224 nN and 0.153 nN, respectively, which was consistent with density functional theory (DFT) calculations. This study broadens our comprehension of cation-π interactions between amines and electron-rich aromatic compounds at the micro/nanoscale.We applied a novel solid-liquid co-electrospinning approach to synthesize hybrid LaCoO3 perovskite nanoparticles@nitrogen-doped carbon nanofibers (LCNP@NCNF) as an effective and robust electrocatalyst for Zn-air batteries. LCNP@NCNF featured an integrated structure with well-crystallized perovskite nanoparticles uniformly distributed in micro/mesoporous NCNF. In addition, LCNP@NCNF exhibited a high specific surface area of ~183.3 m2 g-1 and a large pore volume of ~0.164 m3 g-1. The rotating-electrode measurement revealed the better intrinsic activity and more favorable stability of LCNP@NCNF in comparison with their counterparts. Moreover, Zn-air batteries employing LCNP@NCNF showed a relatively smaller discharge-charge voltage gap of ~0.95 V and longer cycling stability than the battery adopting the physically blended LCNP and NCNF. We ascribed the improved electrochemical activity to the enhanced synergistic interaction originating from the successful coupling of LCNP and NCNF.Exploiting low cost and durable electrocatalysts with high efficiency for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is of great significance for energy conversion and storage applications. Herein, a hybrid electrocatalyst of FeCo alloy nanoparticles embedded in a porous N-doped carbon was prepared via a pyrolysis process of low-cost melamine sponge and mass-produced metal-polyphenol network. Benefting from the metal coordination of metal-polyphenol network and abundant N source of melamine sponge, the metal-N moiety and FeCo alloy nanoparticles (wtih a diameter around 50 nm) encapsulated in a N-doped graphene-like carbon layer were formed in-situ. Such intimate integration of graphene-like carbon-encapsulated FeCo alloys, metal-N active species, and porous structure is conducive to improve the catalytic activity and increase the catalytic durability in alkaline media. As a consequence, the as-prepared electrocatalyst exhibits the pronounced activity toward ORR, OER, and HER simultaneously under alkaline condition, particularly on the performances of potential, stability, and methanol tolerance.

Autoři článku: Mcleodbarnett0021 (Jokumsen Greene)