Mcleanrahbek8367
Parkinson's disease and diabetes mellitus are two chronic disorders associated with aging that are becoming increasingly prevalent worldwide. Parkinson is a multifactorial progressive condition with no available disease modifying treatments at the moment. Over the last few years there is growing interest in the relationship between diabetes (and impaired insulin signaling) and neurodegenerative diseases, as well as the possible benefit of antidiabetic treatments as neuroprotectors, even in non-diabetic patients. Insulin regulates essential functions in the brain such as neuronal survival, autophagy of toxic proteins, synaptic plasticity, neurogenesis, oxidative stress and neuroinflammation. We review the existing epidemiological, experimental and clinical evidence that supports the interplay between insulin and neurodegeneration in Parkinson's disease, as well as the role of antidiabetic treatments in this disease.Now-a-days healthcare systems face great challenges with antibiotic resistance and low efficacy of antibiotics when combating pathogenic bacteria and bacterial biofilms. Administration of an antibiotic in its free form is often ineffective due to lack of selectivity to the infectious site and breakdown of the antibiotic before it exerts its effect. Therefore, polymeric delivery systems, where the antibiotic is encapsulated into a formulation, have shown great promise, facilitating a high local drug concentration at the site of infection, a controlled drug release and less drug degradation. All this leads to improved therapeutic effects and fewer systemic side effects together with a lower risk of developing antibiotic resistance. https://www.selleckchem.com/products/eeyarestatin-i.html Here, we review and provide a comprehensive overview of polymer-based nano- and microparticles as carriers for antimicrobial agents and their effect on eradicating bacterial biofilms. We have a main focus on polymeric particulates containing poly(lactic-co-glycolic acid), chitosan and polycaprolactone, but also strategies involving combinations of these polymers are included. Different production techniques are reviewed and important parameters for biofilm treatment are discussed such as drug loading capacity, control of drug release, influence of particle size and mobility in biofilms. Additionally, we reflect on other promising future strategies for combating biofilms such as lipid-polymer hybrid particles, enzymatic biofilm degradation, targeted/triggered antibiotic delivery and future alternatives to the conventional particles.The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.Pediatric upper airway disorders are frequently life-threatening and require precise assessment and intervention. Targeting these pathologies remains a challenge for clinicians due to the high complexity of pediatric upper airway anatomy and numerous potential etiologies; the most common treatments include systemic delivery of high dose steroids and antibiotics or complex and invasive surgeries. Furthermore, the majority of innovative airway management technologies are only designed and tested for adults, limiting their widespread implementation in the pediatric population. Here, we provide a comprehensive review of the most recent challenges of managing common pediatric upper airway disorders, describe the limitations of current clinical treatments, and elaborate on how to circumvent those limitations via local controlled drug delivery. Furthermore, we propose future advancements in the field of drug-eluting technologies to improve pediatric upper airway management outcomes.Exposure to cranial radiotherapy is associated with an increased risk of subsequent CNS neoplasms among childhood, adolescent, and young adult (CAYA) cancer survivors. Surveillance for subsequent neoplasms can translate into early diagnoses and interventions that could improve cancer survivors' health and quality of life. The practice guideline presented here by the International Late Effects of Childhood Cancer Guideline Harmonization Group was developed with an evidence-based method that entailed the gathering and appraisal of published evidence associated with subsequent CNS neoplasms among CAYA cancer survivors. The preparation of these guidelines showed a paucity of high-quality evidence and highlighted the need for additional research to inform survivorship care. The recommendations are based on careful consideration of the evidence supporting the benefits, risks, and harms of the surveillance interventions, clinical judgment regarding individual patient circumstances, and the need to maintain flexibility of application across different health-care systems. Currently, there is insufficient evidence to establish whether early detection of subsequent CNS neoplasms reduces morbidity and mortality, and therefore no recommendation can be formulated for or against routine MRI surveillance. The decision to start surveillance should be made by the CAYA cancer survivor and health-care provider after careful consideration of the potential harms and benefits of surveillance for CNS neoplasms, including meningioma.