Mcleanhinrichsen9615

Z Iurium Wiki

tact with social workers compared to other children with seemingly similar adversities.

There is potentially a high degree of underreporting of social work contact in social surveys and cohort studies. Researchers should adopt methods to account for this issue in the future. The risk of emotional and behavioural problems is greater among children whose mothers have had contact with social workers compared to other children with seemingly similar adversities.Aspects of personality in nonhuman primates have been linked to health, social relationships, and life history outcomes. In humans as well as nonhuman primates, facial morphology is associated with assertiveness, aggression, and measures of dominance status. In this study we aimed to examine the relationship among facial morphology, age, sex, dominance status, and ratings on the personality dimensions Confidence, Openness, Assertiveness, Friendliness, Activity, and Anxiety in rhesus macaques (Macaca mulatta). We measured facial width-to-height ratio (fWHR) and lower-height/full-height ratio (fLHFH) using photographs from 109 captive rhesus macaques, which observers also assessed for dominance status and personality, and explored the associations among facial morphology, age, sex, dominance status, and personality. fWHR and fLHFH personality associations depended on age category Assertiveness was associated with higher fWHR and fLHFH, and Confidence was associated with lower fWHR and fLHFH, but all these associations were consistent only in individuals less then 8 yr. of age. We found fWHR and fLHFH to not be consistently associated with sex or dominance status; compared to younger individuals, we found few associations with fWHR and fLHFH for individuals older than 8 yr., which may be due to limited sample size. Our results indicate that in macaques less then 8 yr. old, facial morphology is associated with the Assertiveness and Confidence personality dimensions, which is consistent with results suggesting a relationship between fWHR and trait aggression in humans and assertiveness in brown capuchins, all of which implies that fWHR might be a cue to assertive and aggressive traits.DNA damage caused by the dissociative electron attachment (DEA) has been well-studied in the gas and solid phases. find more However, understanding of this process at the fundamental level in solution is still a challenge. The electrons, after losing their kinetic energy via ionization and excitation events, are thermalized and undergo a multistep hydration process with a time constant of ca. ≤1 ps, to becoming fully trapped as a hydrated or solvated electron (esol- or eaq-). Prior to the formation of esol-, the electron exists in its presolvated (or prehydrated) state (epre-) with no kinetic energy. We used picosecond pulse radiolysis to generate electrons in water or in liquid diethylene glycol (DEG) to observe the dynamics of capture of these electrons by DNA/RNA bases, nucleosides, and nucleotides. Contrary to the hypotheses in the literature that the presolvated electrons (epre-) are captured well by the DNA-nucleosides/tides and the transient negative ions (TNIs) cause strand breaks, we first show that the quasi-same glycosidic bond (N1-C1') cleavage.Wavefront shaping (WFS) based on digital optical phase conjugation (DOPC) has gained major interest in focusing light through or inside scattering media. However, the quality of DOPC is greatly limited by imperfections of the system in a complicated and coupled way. In this Letter, we incorporate the concept of global optimization to solve this problem comprehensively for the first time, to the best of our knowledge. link2 An automatic and intelligent optimization framework for DOPC techniques is proposed, leveraging the global optimization ability of particle swarm optimization (PSO). We demonstrate the general and powerful ability of the proposed approach in a series of DOPC-related experiments for focusing through and inside scattering media. This novel work can improve the OPC quality greatly and simplify the development of a high-performance DOPC system, which may open up a new avenue for the general scientific community to benefit from DOPC-based WFS in their potential applications.Hydroclimate extremes in North America, Europe, and the Mediterranean are linked to ocean and atmospheric circulation anomalies in the Atlantic, but the limited length of the instrumental record prevents complete identification and characterization of these patterns of covariability especially at decadal to centennial timescales. Here we analyze the coupled patterns of drought variability on either side of the North Atlantic Ocean basin using independent climate field reconstructions spanning the last millennium in order to detect and attribute epochs of coherent basin-wide moisture anomalies to ocean and atmosphere processes. A leading mode of broad-scale moisture variability is characterized by distinct patterns of North Atlantic atmosphere circulation and sea surface temperatures. We infer a negative phase of the North Atlantic Oscillation and colder Atlantic sea surface temperatures in the middle of the 15th century, coincident with weaker solar irradiance and prior to strong volcanic forcing associated with the early Little Ice Age.In multiple change-point analysis, one of the major challenges is to estimate the number of change-points. Most existing approaches attempt to minimize a Schwarz information criterion which balances a term quantifying model fit with a penalization term accounting for model complexity that increases with the number of change-points and limits overfitting. However, different penalization terms are required to adapt to different contexts of multiple change-point problems and the optimal penalization magnitude usually varies from the model and error distribution. We propose a data-driven selection criterion that is applicable to most kinds of popular change-point detection methods, including binary segmentation and optimal partitioning algorithms. The key idea is to select the number of change-points that minimizes the squared prediction error, which measures the fit of a specified model for a new sample. We develop a cross-validation estimation scheme based on an order-preserved sample-splitting strategy, and establish its asymptotic selection consistency under some mild conditions. Effectiveness of the proposed selection criterion is demonstrated on a variety of numerical experiments and real-data examples.The efficacy of wireless intracortical brain-computer interfaces (iBCIs) is limited in part by the number of recording channels, which is constrained by the power budget of the implantable system. Designing wireless iBCIs that provide the high-quality recordings of today's wired neural interfaces may lead to inadvertent over-design at the expense of power consumption and scalability. Here, we report analyses of neural signals collected from experimental iBCI measurements in rhesus macaques and from a clinical-trial participant with implanted 96-channel Utah multielectrode arrays to understand the trade-offs between signal quality and decoder performance. Moreover, we propose an efficient hardware design for clinically viable iBCIs, and suggest that the circuit design parameters of current recording iBCIs can be relaxed considerably without loss of performance. The proposed design may allow for an order-of-magnitude power savings and lead to clinically viable iBCIs with a higher channel count.The emergence and re-emergence of highly virulent viral pathogens with the potential to cause a pandemic creates an urgent need for the accelerated discovery of antiviral therapeutics. Antiviral human monoclonal antibodies (mAbs) are promising candidates for the prevention and treatment of severe viral diseases, but their long development timeframes limit their rapid deployment and use. Here, we report the development of an integrated sequence of technologies, including single-cell mRNA-sequence analysis, bioinformatics, synthetic biology and high-throughput functional analysis, that enables the rapid discovery of highly potent antiviral human mAbs, the activity of which we validated in vivo. In a 78-d study modelling the deployment of a rapid response to an outbreak, we isolated more than 100 human mAbs that are specific to Zika virus, assessed their function, identified that 29 of these mAbs have broadly neutralizing activity, and verified the therapeutic potency of the lead candidates in mice and non-human primate models of infection through the delivery of an antibody-encoding mRNA formulation and of the respective IgG antibody. The pipeline provides a roadmap for rapid antibody-discovery programmes against viral pathogens of global concern.The prevalence of concomitant proteinopathies and heterogeneous clinical symptoms in neurodegenerative diseases hinders the identification of individuals who might be candidates for a particular intervention. Here, by applying an unsupervised clustering algorithm to post-mortem histopathological data from 895 patients with degeneration in the central nervous system, we show that six non-overlapping disease clusters can simultaneously account for tau neurofibrillary tangles, α-synuclein inclusions, neuritic plaques, inclusions of the transcriptional repressor TDP-43, angiopathy, neuron loss and gliosis. We also show that membership to the six transdiagnostic disease clusters, which explains more variance in cognitive phenotypes than can be explained by individual diagnoses, can be accurately predicted from scores of the Mini-Mental Status Exam, protein levels in cerebrospinal fluid, and genotype at the APOE and MAPT loci, via cross-validated multiple logistic regression. link3 This combination of unsupervised and supervised data-driven tools provides a framework that could be used to identify latent disease subtypes in other areas of medicine.Understanding the pathophysiology of SARS-CoV-2 infection is critical for therapeutic and public health strategies. Viral-host interactions can guide discovery of disease regulators, and protein structure function analysis points to several immune pathways, including complement and coagulation, as targets of coronaviruses. To determine whether conditions associated with dysregulated complement or coagulation systems impact disease, we performed a retrospective observational study and found that history of macular degeneration (a proxy for complement-activation disorders) and history of coagulation disorders (thrombocytopenia, thrombosis and hemorrhage) are risk factors for SARS-CoV-2-associated morbidity and mortality-effects that are independent of age, sex or history of smoking. Transcriptional profiling of nasopharyngeal swabs demonstrated that in addition to type-I interferon and interleukin-6-dependent inflammatory responses, infection results in robust engagement of the complement and coagulation pathways. Finally, in a candidate-driven genetic association study of severe SARS-CoV-2 disease, we identified putative complement and coagulation-associated loci including missense, eQTL and sQTL variants of critical complement and coagulation regulators. In addition to providing evidence that complement function modulates SARS-CoV-2 infection outcome, the data point to putative transcriptional genetic markers of susceptibility. The results highlight the value of using a multimodal analytical approach to reveal determinants and predictors of immunity, susceptibility and clinical outcome associated with infection.

Autoři článku: Mcleanhinrichsen9615 (Hampton Foley)