Mcknightschmitt2274

Z Iurium Wiki

Aims We aimed to investigate the functional alterations, diagnostic utilization, and prognostic implication of carotid arterial deformations in subjects with cardiovascular risk factors and heart failure (HF) with preserved ejection fraction (HFpEF). Methods and results Among 251 prospectively participants (mean age 66.0 ± 9.8 years, 65.7% female) in a single centre between December 2011 and September 2014, carotid artery deformations including circumferential strain (CCS)/strain rate and radial strain were analysed by two-dimensional speckle tracking. We further related these carotid artery deformation indices to HF biomarkers and cardiac structure and function by echocardiography and explored their prognostic values. Significant reductions of CCS, circumferential strain rate, and circumferential radial strain were observed across control (n = 52), high risk (n = 147), and HFpEF (n = 52) (trend P ≤ 0.001). Aging, hypertension, HFpEF, and higher pulse rate showed independent associations with reduced CCS by sovel mechanistic insights on functional arterial alterations reflecting coupled arterial-ventricular pathophysiology. Utilization of such measure may further provide additive prognostic value to advanced myocardial functional assessment.Background Male infertility represents a complex clinical condition requiring an accurate multilevel assessment, in which machine learning technology, combining large data series in non-linear and highly interactive ways, could be innovatively applied. Methods A longitudinal, observational, retrospective, big data study was carried out, applying for the first time the ML in the context of male infertility. A large database including all semen samples collected between 2010 and 2016 was generated, together with blood biochemical examinations, environmental temperature and air pollutants exposure. First, the database was analysed with principal component analysis and multivariable linear regression analyses. Second, classification analyses were performed, in which patients were a priori classified according to semen parameters. Third, machine learning algorithms were applied in a training phase (80% of the entire database) and in a tuning phase (20% of the data set). Finally, conventional statistical analyses were applied considering semen parameters and those other variables extracted during machine learning. Acetalax manufacturer Results The final database included 4239 patients, aggregating semen analyses, blood and environmental parameters. Classification analyses were able to recognize oligozoospermic, teratozoospermic, asthenozoospermic and patients with altered semen parameters (0.58 accuracy, 0.58 sensitivity and 0.57 specificity). Machine learning algorithms detected three haematological variables, that is lymphocytes number, erythrocyte distribution and mean globular volume, significantly related to semen parameters (0.69 accuracy, 0.78 sensitivity and 0.41 specificity). Conclusion This is the first machine learning application to male fertility, detecting potential mathematical algorithms able to describe patients' semen characteristics changes. In this setting, a possible hidden link between testicular and haematopoietic tissues was suggested, according to their similar proliferative properties.Biomedical magnesium alloy stents have become a hot bed of research focus in interventional therapy for nonvascular diseases. In this study, a numerical model for a balloon-expandable bile duct stent made of magnesium alloy with laser sculpture is developed to predict the effects of the degradation of the stent on the biomechanical behavior in the stent-bile duct coupling system. Based on a continuum damage model, the degradable model of the stent is built to understand its performance in an idealized bile duct as it is subject to corrosion over time. The degradation model developed in this study addresses the uniform corrosion and pitting corrosion. By means of the secondary development function of commercial numerical software ANSYS, the finite element analysis procedures were written to control the degradation process based on the technology of element "birth and death," and it is shown how the three-dimensional model and approach give the possibility of analyzing for the degradation mechanism of a magnesium alloy stent in the bile duct or other nonvascular cavities.Zein, a natural protein from corn, has important applications in food and pharmaceutical industries due the fact that it is biodegradable and biocompatible. However, due its relatively low mechanical properties and water solubility, many inorganic compounds (e.g., bioactive glasses [BGs]) have been used in combination with zein to obtain composite materials with improved mechanical properties. Such inorganic additions provide further biological functionality to zein. In this work, fiber mats of zein with incorporation of BG and copper doped BG particles are successfully obtained by electrospinning. At first the electrospinnability of the blends is assessed, then the morphological and chemical characterization of the mats is done. Degradation study in cell culture medium (Dubelcco's modified Eagle's medium) reveals a sufficient strength of the fibers, which in turn is necessary for in vitro cellular studies. Cell culture studies using MG-63 and C2C12 cells show promising results, demonstrating increased cell proliferation and growth for fiber mats containing both types of BGs. Also, evaluation with Staphylococcus aureus and Escherichia coli bacteria confirms the antibacterial activity of the scaffolds containing copper. The presence of Cu thus imparts antibacterial properties without influencing cell behavior. The developed electrospun fibers represent a novel scaffold system for tissue engineering applications.Background The flow cytometry analysis of GPI-linked proteins on red blood cells and leukocytes is crucial for paroxysmal nocturnal hemoglobinuria (PNH) diagnostics. However, the commonly used multicolor panels cannot be implemented in low-resourced hematology laboratories. In order to develop a simple prediagnostic test for PNH screening, we analyzed the diagnostic accuracy of the two-color (FLAER/CD15) detection of GPI-deficient neutrophils. Methods We reanalyzed multicolor data set of 1594 peripheral blood samples of patients screened for PNH applying only two markers (FLAER/CD15). The quantitative positivity/negativity was reported. Then, these results were compared in a blinded manner with previously obtained multicolor data from the same samples. Results Among the 1594 samples included in the study, 507 samples were PNH-positive by the multicolor assay. The two-color method revealed 510 PNH-positive samples. The detailed examination of this discrepancy revealed 12 false-positives and 9 false-negatives. Therefore, FLAER/CD15 screening method displayed 98.

Autoři článku: Mcknightschmitt2274 (Joensen Stefansen)