Mckinleysexton6717

Z Iurium Wiki

Dispersive liquid-liquid microextraction (DLLME) has recently been widely used in the separation and preconcentration of various chemical species. Among the various approaches using DLLME are systems that use a syringe as an extraction environment. In this review, details of some methods that use this approach are presented. The ways to promote dispersion, analytical characteristics, and the advantages and disadvantages of the methods, among other aspects, are discussed critically. Finally, some trends in the use of in-syringe microextraction systems are described.Detection of protein biomarkers relies largely on the development of modern immunological methods. Herein, a new enzyme-free immunological method is proposed to detect protein biomarkers. Employment of antibody-Cu3(PO4)2 hybrid nanoflowers, which are prepared through a facile and mild biomimetic-mineralizing process, is the core concept of the method. These nanoflowers can perform functions one is to bind to target protein biomarkers with high specificity; the other is to release large amounts of Cu2+ upon acid treatment, which can interact with creatinine and exert peroxidase-mimicking enzyme activity, therefore producing a distinctly amplified signal. Using osteocalcin, a well-known circulating protein biomarker for bone formation, as a model, the method affords a linear range from 0.1 to 50 ng/mL with a detection limit of 0.042 ng/mL, which is superior to reported methods. Moreover, the method shows considerable specificity, desirable performance in serum samples and eliminates the use of enzymes, so a great potential for this method is expected to meet the need of the clinical diagnosis.Herein, we developed a new Pd NP from the aq extract of Elsholtzia blanda Benth. flower that showed efficient peroxidase mimetic activity. The catalytic mechanism was confirmed through colorimetric analysis. The optimizations of temperature, concentration, PH and time were done to find out the best procedure to implement the intrinsic catalytic activity in practical applications. Michaelis-Menten constants were evaluated for both TMB and H2O2 substrate to investigate the affinity of Pd NP towards them. Km was observed to be 42.35 mM for H2O2 and 0.0076 mM for TMB. 17-DMAG Antioxidants were sensed using the peroxidase mimetic property up to nanomolar levels with a LOD = 0.78 nM for Gallic acid 0.85 nM for Tannic acid. The method was further implemented in comparing the radical scavenging power of different phenolic compounds. Smart-phone based analysis was done for observing the change in colour which could further be utilized as an analytical tool for study the antioxidant activity. R-Square values of 0.97 and 0.96 for detection of gallic acid and tannic acid respectively suggest good linearity of the plot. Lastly, the system was utilized in the evaluation of total antioxidant capacity (TAC) and total phenolic content (TPC) in commercially available juices and beverages.This work initially reports a new nanosening method for simple, sensitive, specific, visual detection of mercury (II) (Hg2+) and glutathione (GSH) using the Tyndall Effect (TE) of the same colloidal gold nanoparticle (GNP) probes for efficient colorimetric signaling amplification. For the TE-inspired assay (TEA) method, arginine (Arg) molecules are pre-modified on the GNPs' surfaces (Arg-GNPs). Upon the Hg2+ introduction, it can be specifically coordinated with the terminal -NH2 and -COOH groups of the Arg molecules to make the Arg-GNPs aggregate, producing a significantly-enhanced TE signal in the reaction solution after its irradiation by a 635-nm red laser pointer pen. On the other hand, the introduction of the GSH results in the production of the original Arg-GNPs' weak TE response, as it is able to bind such metal ion via mercury-thiol reactions to inhibit the above aggregation. Under the optimal conditions, the utility of the new TEA method is well demonstrated to quantitatively detect the Hg2+ and GSH with the aid of a smartphone as a portable TE reader during the linear concentration ranges of 50-3000 and 10-3000 nM, respectively. The detection limits for the Hg2+ and GSH are estimated to be as low as ∼3.5 and ∼0.3 nM, respectively. The recovery results obtained from the detection of Hg2+ in the complex tap and pond water samples and the assay of GSH in real human serum and urine samples are also satisfactory.In this work, a method for total sulphur determination in automotive gasoline using dried matrix spot sampling is proposed. The method is based on the deposition of the sample on a cellulose-based filter paper and subsequent sulphur quantification via CS diatomic molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The sample deposition was carried out, along with the chemical modifier, on a 20-mm filter paper disc previously adapted into a polytetrafluoroethylene (PTFE) mould. The liquid phase was removed by heating the PTFE mould, and then the gasoline sample-embedded filter paper was punched in smaller discs (procedure A) or pulverised (procedure B) before the analyses. The mixture of Pd and Mg was used as chemical modifier to stabilise the sulphur compounds on the filter paper and on the graphite furnace. All the calibration curves constructed using seven different sulphur-containing compounds had a coefficient of determination higher than 0.995 and a linear range from 2 to 150 mg kg-1 S. By using the optimised conditions, the best characteristic mass, limits of detection and quantitation were 6 ng, 0.6 and 1.8 mg kg-1, respectively. The two sampling procedures (A and B) were evaluated for real samples, and procedure B was chosen since it markedly improved the precision. Using this procedure, satisfactory recovery values from 95 to 106% were obtained in the spike-recovery tests. In addition, the S concentrations for the certified reference materials were not statistically different from the certified values at 95% confidence level. Sulphur concentrations from 20 to 46 mg kg-1 were found in the six analysed gasoline samples, and these values were statistically assessed using a reference method (ASTM 5453). Spectral interference caused by MgF and MgCl diatomic molecules was observed and investigated.Ionic liquids (ILs) such as imidazole can be used to prevent the sorption of analytes onto the quartz walls of the capillary. Coating the capillary wall with a cation layer increases its surface stability, consequently improving the repeatability of separation process. Currently, examining the effects of dynamic coatings on the capillary wall is an emerging trend in capillary electrophoresis (CE) research. This study uses micellar electrokinetic chromatography (MEKC) to evaluate how ILs in the background electrolyte (BGE) affect the separation efficiency of biogenic amines (BAs). Specifically, this research focuses on 12 ILs built from cations containing an imidazole ring with different alkyl substituents and anions, as well as one IL containing a pyridinium cation with tetrafluoroborate anion. All analyzed ILs, which were added to the BGE in concentrations ranging from 1 to 20 mM, were tested for their ability to improve the electrophoretic separation of selected BAs, namely homovanillic acid (HVA), vanililmected BAs.There are limited data on amperometric biosensors (ABSs) based on deiminases that produce ammonium as a byproduct of enzymatic reaction. The most frequently proposed biosensors utilizing such a mode are based on potentiometric transducers, which contain at least two enzymes in the bioselective layer; this complicates the procedure and increases the cost of analysis. Thus, the construction of a one-enzyme ABS is a practical problem. In our manuscript ABSs for the direct measurement of creatinine (Crn) and l-arginine (Arg), based on the recombinant bacterial creatinine deiminase (CDI) and arginine deiminase (ADI), are described. To choose the best chemosensor on ammonium ions, a number of nanoparticles (NPs) were synthesized and characterized using cyclic voltammetry. Hybrid Cu/Zn(Hg)S-NPs, having a good selectivity and an extremely high sensitivities towards ammonium ions (5660 A M-1 m-2 at +170 mV and 1870 A M-1 m-2 at -300 mV, respectively), was selected for the development of deiminase-based ABSs. The novel biosensors exhibited very high sensitivities (2660 A M-1 m-2 to Crn for CDI-ABS; 1570 A M-1 m-2 to Arg for ADI-ABS), broad linear ranges, low limits of detection, satisfactory storage stabilities and good selectivities towards natural substrates. The constructed CDI-ABS and ADI-ABS were tested on real samples of biological fluids and juices for Crn and Arg assay, respectively. High correlations of the obtained results with the reference methods were demonstrated for the target analytes.A highly sensitive and specific ELISA-like chemiluminescence method for detection of fibrin has been developed. In the sensing platform, the homing peptide (CREKA), as recognition molecule, which can specially recognize the fibrin on microtiter plate, combined with G-quadruplex-based DNAzyme to form the probe of G-quadruplex-hemin DNAzyme-CREKA. After the sample solution was coated on the plates, the probe was crosslinked with fibrin through the interaction of CREKA and fibrin. Finally, luminol-H2O2 chemiluminesecence (CL) reaction was exploited for quantitative analysis of fibrin. The liner range for fibrin detection was from 0.112 pmol L-1 to 5.6 pmol L-1 with the detection limit of fibrin as low as 0.04 pmol L-1, based on a signal-to-noise ratio (S/N) of 3. Furthermore, on the basis of the high amplification efficiency of the rolling circle amplification (RCA) reaction, the method enabled to analyze fibrin with a detection limit corresponding to 0.06 fmol L-1, whose sensitivity increased 3 orders of magnitude than that of above method in the absence of RCA reaction. In particular, combined with the separation and washing steps of ELISA, the proposed method possessed higher selectivity, high-throughput and low cost, which shows promise for applications in clinical diagnosis.We developed a small fluorescence microplate reader with an organic photodiode (OPD) array. The OPD array has nine OPDs that have a large light receiving area (9.62 mm2 per one OPD). Since the OPD array is fabricated on a flat glass plate, it can be placed just below microwells and can detect fluorescence emitted through the entire surface of the microwell bottom. The analytical performance of the developed plate reader was evaluated by measuring an aqueous solution of resorufin. The limit of detection (LOD) for resorufin (0.01-0.05 μM) was lower than that obtained with a plate reader equipped with nine inorganic photodiodes developed in a previous study (0.30 μM) and a commercially available microplate reader (0.16 μM). These results indicate that the large light receiving area improves the detection performance of the system. In addition, the developed reader was successfully used to quantify immunoglobulin A (IgA) in human saliva. The LOD for IgA was estimated to be 1.2 ng/mL, which is low enough to objectively evaluate human stress.Although reactive nitrogen species (RNS) may attack biomacromolecules and cause tissue damage when unbalanced by natural antioxidant defenses of the organism, they can also take part in cell signaling under different physiological states and defend against certain pathogens. Since there is a scarcity of analytical methods to detect radicalic NO and its scavengers, a functionalized gold nanoparticle-based spectrophotometric method and a spectrofluorometric method have been separately developed to test antioxidant activity toward scavenging of NO produced from sodium nitroprusside (SNP). The spectrophotometric method involves conversion of NO to nitrite, followed by the formation of an azo dye with 4-aminothiophenol (4-ATP)-modified gold nanoparticles (AuNPs) and N-(1-naphthyl)-ethylene diamine dichloride (NED) and its absorbance measurement at 565 nm. Calibration equations were established by taking the absorbance difference in the presence and absence of antioxidants. In the spectrofluorometric method, the excess of NO radicals, after being scavenged by thiol type antioxidants, caused a decrease in resorcinol fluorescence.

Autoři článku: Mckinleysexton6717 (Mendez Hyllested)