Mckennamccollum9400
The key performance indicators (KPIs), namely EVM, BER, and throughput, were measured for 5G signals with 64-QAM and 256-QAM modulation schemes. The obtained results show that the D&F co-operative 5G network achieves substantially improved KPIs in the communication between the gnodeB and the UE in an outdoor-to-indoor scenario. Furthermore, it has been demonstrated that the D&F protocol presents a good performance and behavior being compared to one commercial equipment.The RapidIO standard is a packet-switching interconnection technology similar to the Internet Protocol (IP) conceptually. It realizes the high-speed transmission of RapidIO packets at the transport layer, but this greatly increases the probability of network blocking. Therefore, it is of great significance to optimize the RapidIO routing strategy. For this problem, this paper proposes a Double-Antibody Group Multi-Objective Artificial Immune Algorithm (DAG-MOAIA), which improves the local search and global search ability of the population by adaptive crossover and adaptive mutation of the double-antibody groups, and uses co-competition of multi-antibody groups to increase the diversity of population. Through DAG-MOAIA, an optimal transmission path from the source node to multiple destination nodes can be selected to solve the Quality Of Service (QoS) problem during data transmission and ensure the QoS of the RapidIO network. Simulation results show that DAG-MOAIA could obtain high-quality solutions to select better routing transmission paths, and exhibit better comprehensive performance in all simulated test networks, which plays a certain role in solving the problem of the RapidIO routing strategy.This paper proposes a barrier function adaptive non-singular terminal sliding mode controller for a six-degrees-of-freedom (6DoF) quad-rotor in the existence of matched disturbances. For this reason, a linear sliding surface according to the tracking error dynamics is proposed for the convergence of tracking errors to origin. Afterward, a novel non-singular terminal sliding surface is suggested to guarantee the finite-time reachability of the linear sliding surface to origin. Moreover, for the rejection of the matched disturbances that enter into the quad-rotor system, an adaptive control law based on barrier function is recommended to approximate the matched disturbances at any moment. The barrier function-based control technique has two valuable properties. First, this function forces the error dynamics to converge on a region near the origin in a finite time. Secondly, it can remove the increase in the adaptive gain because of the matched disturbances. Lastly, simulation results are given to demonstrate the validation of this technique.In this study, we present a highly integrated design of organic optoelectronic devices for Point-of-Need (PON) nitrite (NO2-) measurement. The spectrophotometric investigation of nitrite concentration was performed utilizing the popular Griess reagent and a reflection-based photometric unit with an organic light emitting diode (OLED) and an organic photodetector (OPD). In this approach a nitrite concentration dependent amount of azo dye is formed, which absorbs light around ~540 nm. The organic devices are designed for sensitive detection of absorption changes caused by the presence of this azo dye without the need of a spectrometer. Using a green emitting TCTAIr(mppy)3 OLED (peaking at ~512 nm) and a DMQADCV3T OPD with a maximum sensitivity around 530 nm, we successfully demonstrated the operation of the OLED-OPD pair for nitrite sensing with a low limit of detection 46 µg/L (1.0 µM) and a linearity of 99%. The hybrid integration of an OLED and an OPD with 0.5 mm × 0.5 mm device sizes and a gap of 0.9 mm is a first step towards a highly compact, low cost and highly commercially viable PON analytic platform. To our knowledge, this is the first demonstration of a fully organic-semiconductor-based monolithic integrated platform for real-time PON photometric nitrite analysis.
Gait is often impaired in people after stroke, restricting personal independence and affecting quality of life. During stroke rehabilitation, walking capacity is conventionally assessed by measuring walking distance and speed. selleck chemicals llc Gait features, such as asymmetry and variability, are not routinely determined, but may provide more specific insights into the patient's walking capacity. Inertial measurement units offer a feasible and promising tool to determine these gait features.
We examined the test-retest reliability of inertial measurement units-based gait features measured in a two-minute walking assessment in people after stroke and while in clinical rehabilitation.
Thirty-one people after stroke performed two assessments with a test-retest interval of 24 h. Each assessment consisted of a two-minute walking test on a 14-m walking path. Participants were equipped with three inertial measurement units, placed at both feet and at the low back. In total, 166 gait features were calculated for each assessment, consisting of spatio-temporal (56), frequency (26), complexity (63), and asymmetry (14) features. The reliability was determined using the intraclass correlation coefficient. Additionally, the minimal detectable change and the relative minimal detectable change were computed.
Overall, 107 gait features had good-excellent reliability, consisting of 50 spatio-temporal, 8 frequency, 36 complexity, and 13 symmetry features. The relative minimal detectable change of these features ranged between 0.5 and 1.5 standard deviations.
Gait can reliably be assessed in people after stroke in clinical stroke rehabilitation using three inertial measurement units.
Gait can reliably be assessed in people after stroke in clinical stroke rehabilitation using three inertial measurement units.Objective As an effective lesion heterogeneity depiction, texture information extracted from computed tomography has become increasingly important in polyp classification. However, variation and redundancy among multiple texture descriptors render a challenging task of integrating them into a general characterization. Considering these two problems, this work proposes an adaptive learning model to integrate multi-scale texture features. Methods To mitigate feature variation, the whole feature set is geometrically split into several independent subsets that are ranked by a learning evaluation measure after preliminary classifications. To reduce feature redundancy, a bottom-up hierarchical learning framework is proposed to ensure monotonic increase of classification performance while integrating these ranked sets selectively. Two types of classifiers, traditional (random forest + support vector machine)- and convolutional neural network (CNN)-based, are employed to perform the polyp classification under the pron through a multiscale grouping of feature inputs, and the feature redundancy through a hierarchal sorting of these feature groups. The improved classification performance against comparative models demonstrated the feasibility and utility of this adaptive learning procedure for feature integration.Super-pixels represent perceptually similar visual feature vectors of the image. Super-pixels are the meaningful group of pixels of the image, bunched together based on the color and proximity of singular pixel. Computation of super-pixels is highly affected in terms of accuracy if the image has high pixel intensities, i.e., a semi-dark image is observed. For computation of super-pixels, a widely used method is SLIC (Simple Linear Iterative Clustering), due to its simplistic approach. The SLIC is considerably faster than other state-of-the-art methods. However, it lacks in functionality to retain the content-aware information of the image due to constrained underlying clustering technique. Moreover, the efficiency of SLIC on semi-dark images is lower than bright images. We extend the functionality of SLIC to several computational distance measures to identify potential substitutes resulting in regular and accurate image segments. We propose a novel SLIC extension, namely, SLIC++ based on hybrid distance measure to retain content-aware information (lacking in SLIC). This makes SLIC++ more efficient than SLIC. The proposed SLIC++ does not only hold efficiency for normal images but also for semi-dark images. The hybrid content-aware distance measure effectively integrates the Euclidean super-pixel calculation features with Geodesic distance calculations to retain the angular movements of the components present in the visual image exclusively targeting semi-dark images. The proposed method is quantitively and qualitatively analyzed using the Berkeley dataset. We not only visually illustrate the benchmarking results, but also report on the associated accuracies against the ground-truth image segments in terms of boundary precision. SLIC++ attains high accuracy and creates content-aware super-pixels even if the images are semi-dark in nature. Our findings show that SLIC++ achieves precision of 39.7%, outperforming the precision of SLIC by a substantial margin of up to 8.1%.This paper deals with a development and lab testing of energy harvesting technology for autonomous sensing in railway applications. Moving trains are subjected to high levels of vibrations and rail deformations that could be converted via energy harvesting into useful electricity. Modern maintenance solutions of a rail trackside typically consist of a large number of integrated sensing systems, which greatly benefit from autonomous source of energy. Although the amount of energy provided by conventional energy harvesting devices is usually only around several milliwatts, it is sufficient as a source of electrical power for low power sensing devices. The main aim of this paper is to design and test a kinetic electromagnetic energy harvesting system that could use energy from a passing train to deliver sufficient electrical power for sensing nodes. Measured mechanical vibrations of regional and express trains were used in laboratory testing of the developed energy harvesting device with an integrated resistive load and wireless transmission system, and based on these tests the proposed technology shows a high potential for railway applications.The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes of these waves is associated with various heart diseases. The first step in isolating the features of an ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based on the PTB-XL database, and the signals from Lead I-XII were analyzed. This research focuses on determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification. The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. The results of the FSL network were compared with the evaluation score of the neural network performing softmax-based classification. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network proved to have higher accuracy in classifying healthy/sick patients ranging from 93.