Mckeebird3534

Z Iurium Wiki

A novel strategy for the growth of molecularly thin two-dimensional molecular crystals (2DMCs) of organic semiconductors with poor solubility was developed. Large-area bilayer 2DMCs were grown on a liquid surface at elevated temperatures, with record mobility and superior photoresponse.Critical Casimir force (CCF) is a solvent fluctuation introduced interaction between particles dispersed in a binary solvent. Recently, it has been demonstrated that the CCF induced attraction between particles can trigger particle size-sensitive aggregation, and has thus been used as an efficient way to purify nanoparticles by size. Here, combining small angle neutron scattering and dynamic light scattering, we investigate the effects of size and concentration on this particle size separation method. Increasing the particle concentration does not significantly affect the purification method, but the solvent composition needs to be adjusted for an optimized efficiency. This purification method is further demonstrated to work also very efficiently for systems with particle size ranging from 15 nm to about 50 nm with a very large size polydispersity. These results indicate that for both short-ranged and long-ranged attraction relative to the particle diameter, the CCF introduced particle aggregation is always size sensitive. This implies that particle aggregation is strongly affected by size polydispersity for many colloidal systems. We further propose a method to use light scattering to help identify the temperature range within which this particle purification method can work efficiently instead of using neutron scattering.An efficient silver-catalyzed method of decarboxylative radical allylation of α,α-difluoroarylacetic acids to build CF2-allyl bonds has been developed. Using allylsulfone as an allyl donor, α,α-difluorine substituted arylacetic acids bearing various functional groups are successfully allylated to access a series of 3-(α,α-difluorobenzyl)-1-propylene compounds in moderate to excellent yields in aqueous CH3CN solution under the mild conditions. Experimental studies disclosed that the α-fluorine substitution of arylacetic acid has a great influence on free radical activity and reactivity.We reported the first synthesis of Mn2+ doped Cs3Sb2Clx/Br9-x (0 ≤ x ≤ 9) perovskite quantum dots (PQDs) by regulating the coprecipitation of Mn2+ and Sb3+ with thiol ligands. These lead-free PQDs demonstrated bright photoluminescence emission centered at 660 nm and a high quantum yield of ∼49%, making them suitable for optical applications.We investigate the coupling of different quantum-embedding approaches with a third molecular-mechanics layer, which can be either polarizable or non-polarizable. In particular, such a coupling is discussed for the multilevel families of methods, in which the system is divided into an active and an inactive orbital space. The computational cost of the resulting three-layer approaches is reduced by treating the long-range interactions at the classical level. The developed methods are tested by the calculation of excitation energies of molecular systems in aqueous solution, for which an atomistic description of the environment is crucial to correctly reproduce the specific solute-solvent interactions, such as hydrogen bonding. In particular, we present the results obtained for three different moieties - acrolein, pyridine and para-nitroaniline - showing that an almost perfect agreement with experimental data can be achieved when the relevant physico-chemical interactions are included in the modeling of the condensed phase.The formation of biomolecular coronas around nanoparticles as soon as they come in contact with biological media is nowadays well accepted. The self-developed biological outer surfaces can affect the targeting capability of the colloidal carriers as well as their cytotoxicity and cellular uptake behavior. In this framework, we explored the structural features and biological consequences of protein coronas around block copolymer assemblies consisting of a common pH-responsive core made by poly[2-(diisopropylamino) ethyl methacrylate] (PDPA) and hydrophilic shells of different chemical natures zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) or highly hydrophilic poly(ethylene oxide) (PEO) and poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA). U0126 cell line We demonstrated the presence of ∼50 nm protein coronas around the nanoparticles regardless of the chemical nature of the polymeric shells. The thickness is understood as the sum of the soft and hard layers and it is the actual interface seen by the cells. Although the soft corona composition is difficult to determine because the proteins are loosely bound to the outer surface of the assemblies, the tightly bound proteins (hard corona) could be identified and quantified. The compositional analysis of the hard corona demonstrated that human serum albumin (HSA), immunoglobulin G (IgG) and fibrinogen are the main components of the protein coronas, and serotransferrin is present particularly in the protein corona of the zwitterionic-stabilized assemblies. The protein coronas substantially reduce the cellular uptake of the colloidal particles due to their increased size and the presence of HSA which is known to reduce nanoparticle-cell adhesion. On the other hand, their existence also reduces the levels of cytotoxicity of the polymeric assemblies, highlighting that protein coronas should not be always understood as artifacts that need to be eliminated due to their positive outputs.A Ru(ii)-catalyzed coupling of various α-carbonyl phosphoniums with sulfoxonium ylides has been realized for the facile synthesis of 1-naphthols in good to excellent yields. This oxidant-free transformation proceeds through Ru-catalyzed C-H activation of phosphoniums, Ru-carbene insertion, and intramolecular Wittig reaction processes.Searching for high-performance electrode materials is an important topic in rechargeable batteries. Using first-principles calculations, we systematically explore the potential application of a two-dimensional BP2 monolayer as a cathode material for Li-ion and Na-ion batteries. The pristine BP2 monolayer exhibits metallic characteristics, which facilitate the transportation of electrons. The Li and Na atoms bind strongly to the BP2 monolayer, indicating a good structural stability. Furthermore, the geometrical structure of BP2 is well maintained during the adsorption process. The Li and Na ions prefer to move along the zigzag direction with relatively low energy barriers. Especially, the ultralow Na diffusion barrier (0.03 eV) implies that monolayer BP2 has an excellent charge/discharge capability. The specific capacity and average electrode potential of Li (Na) are 619.45 (279.93) mA h g-1 and 2.89 (2.49) V, respectively. These results reveal that the BP2 monolayer is an appealing cathode material for alkali-metal batteries.

Autoři článku: Mckeebird3534 (Sears Knudsen)