Mcintyrechang3633
In modern biomedical research, the data often contain a large number of variables of mixed data types (continuous, multi-categorical, or binary) but on some variables observations are missing. Imputation is a common solution when the downstream analyses require a complete data matrix. Several imputation methods are available that work under specific distributional assumptions. We propose an improvement over the popular non-parametric nearest neighbor imputation method which requires no particular assumptions. The proposed method makes practical and effective use of the information on the association among the variables. In particular, we propose a weighted version of the Lq distance for mixed-type data, which uses the information from a subset of important variables only. The performance of the proposed method is investigated using a variety of simulated and real data from different areas of application. The results show that the proposed methods yield smaller imputation error and better performance when compared to other approaches. It is also shown that the proposed imputation method works efficiently even when the number of samples is smaller than the number of variables.
The streak artifacts in computed tomography (CT) images caused by low photon counts are known to be effectively suppressed by raw-data-based techniques. This study aims to propose a technique to reduce the streak artifact without accessing the raw data.
The proposed streak artifact reduction (SAR) technique consists of three steps numerical forward projection to a CT image, adaptive filtering of the generated sinogram, and image reconstruction from the processed sinogram. The authors have expanded the two-dimensional method (2D-SAR) to three dimensions (3D-SAR) by using consecutive CT images. The modulation transfer function (MTF), the image noise (standard deviation), and the visibility of comb-shaped objects were evaluated at a low dose of 5mGy. Using anthropomorphic abdominal and chest phantoms, CT images and the artifact index (AI) were compared between 3D-SAR and two types of iterative reconstruction (IR).
Sufficient artifact reductions associated with 54% and 61% reduction of noise for 2D- and 3D-SAR, respectively, were obtained in the phantom images, although the 50%MTF decreased by 28%. The visibility of the combs was improved with both the 2D- and 3D-SAR methods. The AI results of 3D-SAR were better than one type of IR and almost equal to the other type of IR, which was consistent with observed artifacts.
Both 2D-SAR and 3D-SAR have turned out to be effective in reducing streak artifacts. The proposed technique will be an effective tool since it needs no raw data, and thus can be applied to any CT images produced by a wide variety of CT systems.
Both 2D-SAR and 3D-SAR have turned out to be effective in reducing streak artifacts. The proposed technique will be an effective tool since it needs no raw data, and thus can be applied to any CT images produced by a wide variety of CT systems.
In a healthy body, the elastic wall of the arteries forms wave-like structures resulting from the continuous pumping of the heart. The systolic and diastolic phases generate a contraction and expansion pattern, which is mimicked in this study by considering a wavy-walled arterial structure. A numerical investigation of the spatio-temporal flow of blood and heat transfer through a porous medium under the action of magnetic field strength is conducted.
The governing equations of the blood flow in the Darcy model are simulated by applying a vorticity-stream function formulation approach. The transformed dimensionless equations are further discretized using the finite difference method by developing the Peaceman-Rachford alternating direction implicit (P-R ADI) scheme.
The computational results for the axial velocity, temperature distribution, flow visualization using the streamlines and vorticity contours, isotherms, wall shear stress and the average Nusselt number are presented graphically for different values of the physical parameters.
The study shows that the axial velocity increases with an increase in the Darcy number, and a similar phenomenon is observed because of an amplitude variation in the wavy wall. learn more Both temperature and wall shear stress decreases with an increase in the Darcy number. The average Nusselt number increases with the magnetic field strength, while it has a reducing tendency due to the permeability of the porous medium.
The study shows that the axial velocity increases with an increase in the Darcy number, and a similar phenomenon is observed because of an amplitude variation in the wavy wall. Both temperature and wall shear stress decreases with an increase in the Darcy number. The average Nusselt number increases with the magnetic field strength, while it has a reducing tendency due to the permeability of the porous medium.The continued sustained threat of the SARS-CoV-2 virus world-wide, urgently calls for far-reaching effective therapeutic strategies for treating this emerging infection. Accordingly, this study explores mode of action and therapeutic potential of existing antiviral drugs. Multiple sequence alignment and phylogenetic analyses indicate that the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 was mutable and similar to bat coronavirus RaTG13. Successive interactions between RdRp (nsp12 alone or in complex with cofactors nsp7-8) and viral RNA demonstrated that the binding affinity values remained the same, but the sites of interaction of RdRp (highly conserved for homologous sequences from different organisms) were altered in the presence of selected antiviral drugs such as Remdesivir, and Sofosbuvir. The antiviral drug Sofosbuvir reduced the number of hydrogen bonds formed between RdRp and RNA. Remdesivir bound more tightly to viral RNA than viral RdRp alone or the nsp12-7-8 hexadecameric complex, resulting in a significant number of hydrogen bonds being formed in the uracil-rich region. The interaction between nsp12-7-8 complex and RNA was mediated by specific interaction sites of nsp7-8. Therefore, the conserved nature of RdRp interaction sites, and alterations due to drug intervention indicate the therapeutic potential of the selected drugs. In this article, we provide additional focus on the interacting amino acids of the nsp7-8 complex and highlight crucial regions that could be targeted for precluding a correct recognition of subunits involved in the hexadecameric assembly, to rationally design molecules endowed with a significant antiviral profile.