Mcintoshburton5102
To further ascertain the regulatory mechanisms of EjGIF1 on triploid loquat heterosis, the methylation levels of EjGIF1 promoter in different ploidy loquats were analyzed by using bisulfite sequencing. Surprisingly, the total methylation levels of EjGIF1 promoter in triploid showed a decreasing trend compared with the mid-parent value (MPV), and this was also consistent with the qRT-PCR results of EjGIF1. Taken together, our results suggested that EjGIF1 played an important role in promoting leaf size development of loquat, and demethylation of EjGIF1 promoter in triploid loquats caused EjGIF1 to exhibit over-dominance expression pattern and then further to promote leaf heterosis formation. In conclusion, EjGIF1 played an important role in the formation of triploid loquat leaf size heterosis.Rare cold inducible 2 (RCI2) proteins are small hydrophobic membrane proteins in plants, and it has been widely reported that RCI2 expressions are dramatically induced by salt, cold, and drought stresses in many species. The RCI2 proteins have been shown to regulate plasma membrane (PM) potential and enhance abiotic stress tolerance when over-expressed in plants. RCI2 protein structures contain two transmembrane domains that are thought to be PM intrinsic proteins and have been observed at the PM and endomembranes. However, cellular trafficking of RCI2s are not fully understood. In this review, we discussed (i) general properties of RCI2s characterized in many species, (ii) the uses of RCI2s as a tracer in live cell imaging analyses and when they are fused to fluorescence proteins during investigations into vesicle trafficking, and (iii) RCI2 functionalities such as their involvement in rapid diffusion, endocytosis, and protein interactions. Consequently, the connection between physiological characteristics of RCI2s and traffic of RCI2s interacting membrane proteins might be helpful to understand role of RCI2s contributing abiotic stresses tolerance.Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) remains a constraint to wheat production in East Africa. In this study, we characterized the genetics of stem rust resistance, identified QTLs, and described markers associated with stem rust resistance in the spring wheat line CI 14275. The 113 recombinant inbred lines, together with their parents, were evaluated at the seedling stage against Pgt races TTKSK, TRTTF, TPMKC, TTTTF, and RTQQC. Screening for resistance to Pgt races in the field was undertaken in Kenya, Ethiopia, and the United States in 2016, 2017, and 2018. One gene conferred seedling resistance to race TTTTF, likely Sr7a. Three QTL were identified that conferred field resistance. QTL QSr.cdl-2BS.2, that conferred resistance in Kenya and Ethiopia, was validated, and the marker Excalibur_c7963_1722 was shown to have potential to select for this QTL in marker-assisted selection. The QTL QSr.cdl-3B.2 is likely Sr12, and QSr.cdl-6A appears to be a new QTL. This is the first study to both detect and validate an adult plant stem rust resistance QTL on chromosome arm 2BS. The combination of field QTL QSr.cdl-2BS.2, QSr.cdl-3B.2, and QSr.cdl-6A has the potential to be used in wheat breeding to improve stem rust resistance of wheat varieties.The unigeneric tribe Heliophileae encompassing more than 100 Heliophila species is morphologically the most diverse Brassicaceae lineage. The tribe is endemic to southern Africa, confined chiefly to the southwestern South Africa, home of two biodiversity hotspots (Cape Floristic Region and Succulent Karoo). The monospecific Chamira (C. circaeoides), the only crucifer species with persistent cotyledons, is traditionally retrieved as the closest relative of Heliophileae. Our transcriptome analysis revealed a whole-genome duplication (WGD) ∼26.15-29.20 million years ago, presumably preceding the Chamira/Heliophila split. The WGD was then followed by genome-wide diploidization, species radiations, and cladogenesis in Heliophila. The expanded phylogeny based on nuclear ribosomal DNA internal transcribed spacer (ITS) uncovered four major infrageneric clades (A-D) in Heliophila and corroborated the sister relationship between Chamira and Heliophila. Herein, we analyzed how the diploidization process impacted the evoiophila clades by a common descent. Four and six clade-specific repeats shared among clade A and C species, respectively, support the monophyly of these two clades. learn more Three repeats shared by all clade A species corroborate the recent diversification of this clade revealed by plastome-based molecular dating. Phylogenetic analysis based on repeat sequence similarities separated the Heliophila species to three clades [A, C, and (B+D)], mirroring the post-polyploid cladogenesis in Heliophila inferred from rDNA ITS and plastome sequences.Waterlogging occurs frequently at the stem elongation stage of wheat in southern China, decreasing post-anthesis photosynthetic rates and constraining grain filling. This phenomenon, and the mitigating effect of nutrient application, should be investigated as it could lead to improved agronomic guidelines. We exposed pot-cultured wheat plants at the stem elongation stage to waterlogging treatment in combination with two rates of potassium (K) application. Waterlogging treatment resulted in grain yield losses, which we attributed to a reduction in the 1,000-grain weight caused by an early decline in the net photosynthetic rate (Pn) post-anthesis. These decreases were offset by increasing K application. Stomatal conductance (Gs) and the intercellular CO2 concentration (Ci) decreased in the period 7-21 days after anthesis (DAA), and these reductions were exacerbated by waterlogging. However, in the period 21-28 DAA, Gs and Ci increased, while Pn decreased continuously, suggesting that non-stomatal factors constrained photosynthesis. On DAA 21, Pn was reduced by waterlogging, but photochemical efficiency (Φ PSII ) remained unchanged, indicating a reduction in the dissipation of energy captured by photosystem II (PSII) through the CO2 assimilation pathway. This reduction in energy dissipation increased the risk of photodamage, as shown by early reductions in Φ PSII in waterlogged plants on DAA 28. However, increased K application promoted root growth and nutrient status under waterlogging, thereby improving photosynthesis post-anthesis. In conclusion, the decrease in Pn caused by waterlogging was attributable to stomatal closure during early senescence; during later senescence, a reduction in CO2 assimilation accounted for the reduced Pn and elevated the risk of photodamage. However, K application mitigated waterlogging-accelerated photosynthetic reductions and reduced yield losses.