Mcintoshbaun0340
The efficiency was similar to that seen with wild-type Tregs. After in vivo expansion, the converted CD4FOXP3 cells recapitulated the transcriptomic core signature for Tregs. These findings demonstrate that FOXP3 expression converts CD4+ T cells into functional Tregs capable of controlling severe autoimmune disease.Pear is one of the most important economic fruits worldwide. The productivity is often negatively affected by drought disaster, but the effects and adaptive mechanism of pear in response to drought stress has not been well understood at the gene transcription levels. Using Illumina HiSeq 2500, the transcriptome from 'Yulu Xiang' Pear leaves were sequenced and analyzed to evaluate the effects of long-term drought stress on the expression of genes in different biosynthetic pathways. Results showed that long-term drought stress weakened antioxidant systematization and impaired the synthesis of photosynthetic pigment in 'Yulu Xiang' Pear leaves. The reduced light utilization and photosynthetic productivity finally resulted in the inhibited fruit development. The transcriptome survey and expression analysis identified 2,207 differentially expressed genes (DEGs) which were summarized into the 30 main functional categories. DEGs analysis showed that the enzyme genes involved in phenylpropanoid biosynthesis under dro provide more valuable information to analyze the function of drought stress-related genes improving plant drought tolerance.The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.Research in cancer care increasingly focuses on survivorship issues, e.g. managing disease- and treatment-related morbidity and mortality occurring during and after treatment. This necessitates innovative approaches that consider treatment side effects in addition to tumor cure. Current treatment-planning methods rely on constrained iterative optimization of dose distributions as a surrogate for health outcomes. The goal of this study was to develop a generally applicable method to directly optimize projected health outcomes. We developed an outcome-based objective function to guide selection of the number, angle, and relative fluence weight of photon and proton radiotherapy beams in a sample of ten prostate-cancer patients by optimizing the projected health outcome. We tested whether outcome-optimized radiotherapy (OORT) improved the projected longitudinal outcome compared to dose-optimized radiotherapy (DORT) first for a statistically significant majority of patients, then for each individual patient. We assessed whether the results were influenced by the selection of treatment modality, late-risk model, or host factors. The results of this study revealed that OORT was superior to DORT. Namely, OORT maintained or improved the projected health outcome of photon- and proton-therapy treatment plans for all ten patients compared to DORT. Furthermore, the results were qualitatively similar across three treatment modalities, six late-risk models, and 10 patients. The major finding of this work was that it is feasible to directly optimize the longitudinal (i.e. long- and short-term) health outcomes associated with the total (i.e. therapeutic and stray) absorbed dose in all of the tissues (i.e. healthy and diseased) in individual patients. This approach enables consideration of arbitrary treatment factors, host factors, health endpoints, and times of relevance to cancer survivorship. It also provides a simpler, more direct approach to realizing the full beneficial potential of cancer radiotherapy.Objective. Dorsal root ganglia (DRG) are promising sites for recording sensory activity. Current technologies for DRG recording are stiff and typically do not have sufficient site density for high-fidelity neural data techniques.Approach. In acute experiments, we demonstrate single-unit neural recordings in sacral DRG of anesthetized felines using a 4.5µm thick, high-density flexible polyimide microelectrode array with 60 sites and 30-40µm site spacing. We delivered arrays into DRG with ultrananocrystalline diamond shuttles designed for high stiffness affording a smaller footprint. We recorded neural activity during sensory activation, including cutaneous brushing and bladder filling, as well as during electrical stimulation of the pudendal nerve and anal sphincter. We used specialized neural signal analysis software to sort densely packed neural signals.Main results. signaling pathway We successfully delivered arrays in five of six experiments and recorded single-unit sensory activity in four experiments. The median neural signal amplitude was 55μV peak-to-peak and the maximum unique units recorded at one array position was 260, with 157 driven by sensory or electrical stimulation.