Mcgrawkaspersen1746

Z Iurium Wiki

Homologous recombination (HR) is a highly conserved DNA repair pathway required for the accurate repair of DNA double-stranded breaks. DNA recombination is catalyzed by the RecA/Rad51 family of proteins, which are conserved from bacteria to humans. The key intermediate catalyzing DNA recombination is the presynaptic complex (PSC), which is a helical filament comprised of Rad51-bound single-stranded DNA (ssDNA). Multiple cellular factors either promote or downregulate PSC activity, and a fine balance between such regulators is required for the proper regulation of HR and maintenance of genomic integrity. However, dissecting the complex mechanisms regulating PSC activity has been a challenge using traditional ensemble methods due to the transient and dynamic nature of recombination intermediates. We have developed a single-molecule assay called ssDNA curtains that allows us to visualize individual DNA intermediates in real-time, using total internal reflection microscopy (TIRFM). This assay has allowed us to study many aspects of HR regulation that involve complex and heterogenous reaction intermediates. Here we describe the procedure for a basic ssDNA curtain assay to study PSC filament dynamics, and explain how to process and analyze the resulting data.RPA is a conserved heterotrimeric complex and the major single-stranded DNA (ssDNA)-binding protein heterotrimeric complex, which in eukaryotes is formed by the RPA-1, RPA-2, and RPA-3 subunits. The main structural feature of RPA is the presence of the oligonucleotide/oligosaccharide-binding fold (OB-fold) domains, responsible for ssDNA binding and proteinprotein interactions. Among the RPA subunits, RPA-1 bears three of the four OB folds involved with RPA-ssDNA binding, although in some organisms RPA-2 can also bind ssDNA. The OB-fold domains are also present in telomere end-binding proteins (TEBP), essential for chromosome end protection. RPA-1 from Leishmania sp., as well as RPA-1 from trypanosomatids, a group of early-divergent protozoa, shows some structural differences compared to higher eukaryote RPA-1. Also, RPA-1 from Leishmania sp., similar to TEBPs, may exert telomeric protective functions. Remarkably, different pieces of evidence have pointed out that trypanosomatids may not have OB fold-containing TEBPs. Moreover, recent data indicate that trypanosomatid RPA-1 may be considered a TEBP since it shares with TEBPs conserved functional and structural features. However, it is still unknown whether the RPA-1 protective telomeric role is exclusive to trypanosomatids or is also present in other primitive eukaryotes. Here, we describe a protocol to obtain highly purified and biologically active Leishmania amazonensis recombinant RPA-1, and to perform molecular modeling and molecular dynamics simulations methods which could be probably applied to functional and structural studies of homologous proteins in other primitive eukaryotes.Replication protein A (RPA) is an essential single-stranded DNA (ssDNA)-binding protein that sequesters ssDNA and protects it from nucleolytic degradation. The RPA-ssDNA nucleoprotein acts as a hub to recruit over two dozen DNA metabolic enzymes onto ssDNA to coordinate DNA replication, repair, and recombination. RPA functions as a heterotrimer composed of RPA70, RPA32, and RPA14 subunits and has multiple DNA-binding and protein-interaction domains. Several of these domains are connected by disordered linkers allowing RPA to adopt a wide variety of conformations on ssDNA. Here we describe a fluorescence-based tool to monitor the dynamics of select DNA-binding domains of RPA. Noncanonical amino acids are utilized to site-specifically engineer fluorescent probes in Saccharomyces cerevisiae RPA heterologously expressed in BL21 (DE3) and its derivatives. A procedure to synthesize 4-azido-L-phenylalanine (4AZP), a noncanonical amino acid, is also described. Sites for fluorophore positioning that produce a measurable change in fluorescence upon binding to ssDNA are detailed. This fluorescence enhancement through noncanonical amino acid (FEncAA) approach can also be applied to other DNA-binding proteins to investigate the dynamics of protein-nucleic acid interactions.Bacterial RecA and eukaryotic Rad51 are recombinases indispensable for DNA homologous recombination and repair of double-stranded DNA breaks. Understanding the functions and biophysical properties of the DNA recombinases benefits the research in human medicine such as cancer biology. Single-molecule techniques provide the mechanistic details of complex biological reactions. Tethered particle motion (TPM) experiment is a simple and multiplex single-molecule tool to monitor DNA-protein interactions. We have developed a single-molecule TPM assay to study DNA recombinase filament assembly and disassembly on individual DNA molecules in real time. Characterization of the temporal change of the Brownian motion of DNA tethers during recombinase assembly and disassembly in real time allows the determination of multiple kinetic parameters of nucleation rate, extension rate, dissociation rate, and length of the recombinase-DNA filament.The bacterial single-stranded DNA-binding protein (SSB) uses an acidic C-terminal tail to interact with over a dozen proteins, acting as a genome maintenance hub. buy Temsirolimus These SSB-protein interactions are essential, as mutations to the C-terminal tail that disrupt these interactions are lethal in Escherichia coli. While the roles of individual SSB-protein interactions have been dissected with mutational studies, small-molecule inhibitors of these interactions could serve as valuable research tools and have potential as novel antimicrobial agents. This chapter describes a high-throughput screening campaign used to identify inhibitors of SSB-protein interactions. A screen targeting the PriA-SSB interface from Klebsiella pneumoniae is presented as an example, but the methods may be adapted to target nearly any SSB interaction.The ability of magnetic tweezers to apply forces and measure molecular displacements has resulted in its extensive use to study the activity of enzymes involved in various aspects of nucleic acid metabolism. These studies have led to the discovery of key aspects of protein-protein and protein-nucleic acid interaction, uncovering dynamic heterogeneities that are lost to ensemble averaging in bulk experiments. The versatility of magnetic tweezers lies in the possibility and ease of tracking multiple parallel single-molecule events to yield statistically relevant single-molecule data. Moreover, they allow tracking both fast millisecond dynamics and slow processes (spanning several hours). In this chapter, we present the protocols used to study the interaction between E. coli SSB, single-stranded DNA (ssDNA), and E. coli RecQ helicase using magnetic tweezers. In particular, we propose constant force and force modulation assays to investigate SSB binding to DNA, as well as to characterize various facets of RecQ helicase activity stimulation by SSB.

Autoři článku: Mcgrawkaspersen1746 (Ivey Gomez)