Mcgowanlindahl1127
r studies with stronger study designs to gain better knowledge of causal factors of CFS/ME.
Nonalcoholic steatohepatitis (NASH) is a form of liver disease characterized by steatosis, necroinflammation, and fibrosis, resulting in cirrhosis and cancer. Efforts have focused on reducing the intake of trans fatty acids (TFAs) because of potential hazards to human health and the increased risk for NASH. However, the health benefits of reducing dietary TFAs have not been fully elucidated. Here, the effects of TFAs vs. a substitute on NASH induced in mice by feeding a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet (CDAA-HF) were investigated.
Mice were fed CDAA-HF containing shortening with TFAs (CDAA-HF-T(+)), CDAA-HF containing shortening without TFAs (CDAA-HF-T(-)), or a control chow for 13 or 26 weeks.
At week 13, NASH was induced in mice by feeding CDAA-HF-T(+) containing TFAs or CDAA-HF-T(-) containing no TFAs, but rather mostly saturated fatty acids (FAs), as evidenced by elevated serum transaminase activity and liver changes, including steatosis, inflammation, and fibrosis. CDAA-HF-T(-) induced a greater extent of hepatocellular apoptosis at week 13. At week 26, proliferative (preneoplastic and non-neoplastic) nodular lesions were more pronounced in mice fed CDAA-HF-T(-) than CDAA-HF-T(+).
Replacement of dietary TFAs with a substitute promoted the development of proliferation lesions in the liver of a mouse NASH model, at least under the present conditions. Attention should be paid regarding use of TFA substitutes in foods for human consumption, and a balance of FAs is likely more important than the particular types of FAs.
Replacement of dietary TFAs with a substitute promoted the development of proliferation lesions in the liver of a mouse NASH model, at least under the present conditions. Attention should be paid regarding use of TFA substitutes in foods for human consumption, and a balance of FAs is likely more important than the particular types of FAs.Microtubules and carbon nanotubes (CNTs), and more particularly multi-walled CNTs (MWCNTs), share many mechanical and morphological similarities that prompt their association into biosynthetic tubulin filaments both, in vitro and in vivo. Unlike CNTs, microtubules are highly dynamic protein polymers that, upon interaction with these nanomaterials, display enhanced stability that has critical consequences at the cellular level. Among others, CNTs prompt ectopic (acentrosomal) microtubule nucleation and the disassembly of the centrosome, causing a dramatic cytoskeletal reorganization. These changes in the microtubule pattern trigger the generation of ineffective biomechanical forces that result in migration defects, and ultimately in spindle-assembly checkpoint (SAC) blockage and apoptosis. In this review, we describe the molecular mechanism involved in the intrinsic interference of CNTs with the microtubule dynamics and illustrate the consequences of this effect on cell biomechanics. We also discuss the potential application of these synthetic microtubule-stabilizing agents as synergetic agents to boost the effect of classical chemotherapy that includes spindle poisons (i.e. paclitaxel) or DNA interfering agents (5-fluorouracil)-, and list some of the advantages of the use of MWCNTs as adjuvant agents in preventing cell resistance to chemotherapy.
Myeloid-derived suppressor cells (MDSCs) play a critical role in modulating the immune response and promoting immune tolerance in models of autoimmunity and transplantation. Regulatory T cells (Tregs) exert therapeutic potential due to their immunomodulatory properties, which have been demonstrated both in vitro and in clinical trials. Cell-based therapy for acute graft-versus-host disease (aGVHD) may enable induction of donor-specific tolerance in the preclinical setting.
We investigated whether the immunoregulatory activity of the combination of MDSCs and Tregs on T cell and B cell subset and alloreactive T cell response. We evaluated the therapeutic effects of combined cell therapy for a murine aGVHD model following MHC-mismatched bone marrow transplantation. We compared histologic analysis from the target tissues of each groups were and immune cell population by flow cytometric analysis.
We report a novel approach to inducing immune tolerance using a combination of donor-derived MDSCs and Tregs. The combined cell-therapy modulated in vitro the proliferation of alloreactive T cells and the Treg/Th17 balance in mice and human system. Systemic infusion of MDSCs and Tregs ameliorated serverity and inflammation of aGVHD mouse model by reducing the populations of proinflammatory Th1/Th17 cells and the expression of proinflammatory cytokines in target tissue. The combined therapy promoted the differentiation of allogeneic T cells toward Foxp3 + Tregs and IL-10-producing regulatory B cells. The combination treatment control also activated human T and B cell subset.
Therefore, the combination of MDSCs and Tregs has immunomodulatory activity and induces immune tolerance to prevent of aGVHD severity. This could lead to the development of new clinical approaches to the prevent aGVHD.
Therefore, the combination of MDSCs and Tregs has immunomodulatory activity and induces immune tolerance to prevent of aGVHD severity. This could lead to the development of new clinical approaches to the prevent aGVHD.
Increasing evidence has revealed the close link between mitochondrial dynamic dysfunction and cancer. MIEF2 (mitochondrial elongation factor 2) is mitochondrial outer membrane protein that functions in the regulation of mitochondrial fission. However, the expression, clinical significance and biological functions of MIEF2 are still largely unclear in human cancers, especially in ovarian cancer (OC).
The expression and clinical significance of MIEF2 were determined by qRT-PCR, western blot and immunohistochemistry analyses in tissues and cell lines of OC. The biological functions of MIEF2 in OC were determined by in vitro and in vivo cell growth and metastasis assays. Tofacitinib manufacturer Furthermore, the effect of MIEF2 on metabolic reprogramming of OC was determined by metabolomics and glucose metabolism analyses.
MIEF2 expression was significantly increased in OC mainly due to the down-regulation of miR-424-5p, which predicts poor survival for patients with OC. Knockdown of MIEF2 significantly suppressed OC cell growth and metastasis both in vitro and in vivo by inhibiting G1-S cell transition, epithelial-to-mesenchymal transition (EMT) and inducing cell apoptosis, while forced expression of MIEF2 had the opposite effects.