Mcfarlandxu2946
Combination studies with ABBV-321 and depatux-m suggest a promising treatment option permitting suboptimal, and potentially better tolerated, doses of both ADCs while providing improved potency. Collectively, these data suggest that ABBV-321 may offer an extended breadth of efficacy relative to other EGFR ADCs while extending utility to multiple EGFR-expressing tumor indications. Despite its highly potent PBD dimer payload, the tumor selectivity of ABBV-321, coupled with its pharmacology, toxicology, and pharmacokinetic profiles, support continuation of ongoing phase I clinical trials in patients with advanced EGFR-expressing malignancies.CB-03-10 (cortexolone 17α-valerate-21-propionate) is a synthetic steroidal compound derived from cortexolone (11-deoxycortisone), an intermediate in cortisol biosynthesis. Characterization of the activity of CB-03-10 and its main related compound CB-03-05 (cortexolone 17α-valerate) included in vitro binding to the androgen and glucocorticoid receptors (AR and GR), antagonism of AR and GR transcriptional activities, and screening for antitumor activity across a selected panel of human prostate and in triple-negative breast cancer cell lines. CB-03-10 cytotoxic activity in these cancer cell lines was in the low micromolar range and was primarily associated with induction of the apoptotic cascade via activation of caspases. The compound's potential for antitumor activity was verified in a murine xenograft model utilizing the AR-positive LNCaP prostate cancer cell line as well as in an orthotopic model utilizing AR-negative/GR-positive MDA-MB-231 breast cancer cell line. Orally administered CB-03-10 inhibited prostate tumor growth and orthotopically implanted breast tumor growth in these mice and maintained body weight, as compared with vehicle-treated mice. On the basis of AR/GR binding affinities, antagonism of androgen and glucocorticoid-dependent transcriptional activities, and AR/GR mRNA and protein expression, the mechanism of tumor growth suppression is related to AR and GR antagonist activities. Importantly, these compounds lack biologically relevant AR/GR agonist activities. I-BET151 mw Overall, these preclinical findings support the selection of CB-03-10 for further development as an anticancer agent in cases where resistance to AR-targeted therapy or chemotherapy, via upregulation of GR activity, continues to limit the efficacy and duration of clinical benefit with these interventions.Rhabdoid tumor is an aggressive, early childhood tumor. Biallelic inactivation of the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1)/integrase interactor 1 (INI1) gene is the only common genetic feature in rhabdoid tumors. Loss of SMARCB1 function results in downregulation of several tumor suppressor genes including p16, p21, and NOXA The novel histone deacetylase inhibitor, OBP-801, induces p21 and has shown efficacy against various cancers. In our study, OBP-801 strongly inhibited the cell growth of all rhabdoid tumor cell lines in WST-8 assay. However, Western blotting and cell-cycle analysis revealed that OBP-801 did not activate the P21-RB pathway in some cell lines. p21 knockout indicated that p21 did not dominate the OBP-801 antitumor effect in rhabdoid tumor cell lines. We discovered that OBP-801 induced NOXA expression and caspase-dependent apoptosis in rhabdoid tumor cell lines independent of TP53. Chromatin immunoprecipitation assay showed that OBP-801 acetylated histone proteins and recruited RNA polymerase II to the transcription start site (TSS) of the NOXA promotor. Moreover, OBP-801 recruited BRG1 and BAF155, which are members of the SWI/SNF complex, to the TSS of the NOXA promotor. These results suggest that OBP-801 epigenetically releases the silencing of NOXA and induces apoptosis in rhabdoid tumors. OBP-801 strongly inhibited tumor growth in human rhabdoid tumor xenograft mouse models in vivo Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and cleaved caspase-3 were stained in tumors treated with OBP-801. In conclusion, OBP-801 induces apoptosis in rhabdoid tumor cells by epigenetically releasing the silencing of NOXA, which is a key mediator of rhabdoid tumor apoptosis. The epigenetic approach for NOXA silencing with OBP-801 is promising for rhabdoid tumor treatment.The sole inhibitory Fcγ receptor CD32b (FcγRIIb) is expressed throughout B and plasma cell development and on their malignant counterparts. CD32b expression on malignant B cells is known to provide a mechanism of resistance to rituximab that can be ameliorated with a CD32b-blocking antibody. CD32b, therefore, represents an attractive tumor antigen for targeting with a monoclonal antibody (mAb). To this end, two anti-CD32b mAbs, NVS32b1 and NVS32b2, were developed. Their complementarity-determining regions (CDR) bind the CD32b Fc binding domain with high specificity and affinity while the Fc region is afucosylated to enhance activation of FcγRIIIa on immune effector cells. The NVS32b mAbs selectively target CD32b+ malignant cells and healthy B cells but not myeloid cells. They mediate potent killing of opsonized CD32b+ cells via antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and ADCP) as well as complement-dependent cytotoxicity (CDC). In addition, NVS32b CDRs block the CD32b Fc-binding domain, thereby minimizing CD32b-mediated resistance to therapeutic mAbs including rituximab, obinutuzumab, and daratumumab. NVS32b mAbs demonstrate robust antitumor activity against CD32b+ xenografts in vivo and immunomodulatory activity including recruitment of macrophages to the tumor and enhancement of dendritic cell maturation in response to immune complexes. Finally, the activity of NVS32b mAbs on CD32b+ primary malignant B and plasma cells was confirmed using samples from patients with B-cell chronic lymphocytic leukemia (CLL) and multiple myeloma. The findings indicate the promising potential of NVS32b mAbs as a single agent or in combination with other mAb therapeutics for patients with CD32b+ malignant cells.VEGF blockade does not uniformly result in clinical benefit. We evaluated safety, dose-limiting toxicities (DLT), recommended phase II dose (RP2D), antitumor efficacy, and exploratory biomarkers including pharmacogenomics and pharmacokinetics with sorafenib, bevacizumab, and paclitaxel in patients with refractory cancers. The study had a "3 + 3" design, using paclitaxel 80 mg/m2 every week for 3 weeks, in every 4 week cycles, bevacizumab 5 mg/kg every 2 weeks, and sorafenib 200 or 400 mg twice a day, 5 or 7 days/week (5/7, 7/7). The MTD cohort was expanded. Twenty-seven patients enrolled in 3 cohorts sorafenib 200 mg twice a day 5/7, 200 mg twice a day 7/7, and 400 mg twice a day 5/7. DLTs were grade 3 neutropenia >7 days (cohort 1, 1), grade 3 hypertension (cohort 2, 1), grade 3 hand-foot skin reaction (HFSR; cohort 3, 2). MTD was sorafenib 200 mg twice a day 7/7. Six DLTs occurred in cohort 2 expansion grade 3 HFSR (2), grade 2 HFSR with sorafenib delay >7 days (2), grade 4 cerebrovascular accident (1), grade 3 neutropenia >7 days (1).