Mcdonoughnelson2188
tumor metastasis and immune microenvironment, providing novel insights into the pathological process of this disease and the corresponding BRCA mutations.Immunotherapy is gradually emerging in the field of tumor treatment. However, because of the complexity of the tumor microenvironment (TME), some patients cannot benefit from immunotherapy. Therefore, we comprehensively analyzed the TME and gene mutations of ccRCC to identify a comprehensive index that could more accurately guide the immunotherapy of patients with ccRCC. We divided ccRCC patients into two groups based on immune infiltration activity. Next, we investigated the differentially expressed genes (DEGs) and constructed a prognostic immune score using univariate Cox regression analysis, unsupervised cluster analysis, and principal component analysis (PCA) and validated its predictive power in both internal and total sets. Subsequently, the gene mutations in the groups were investigated, and patients suitable for immunotherapy were selected in combination with the immune score. The prognosis of the immune score-low group was significantly worse than that of the immune score-high group. The patients with BRCA1-associated protein 1 (BAP1) mutation had a poor prognosis. Thus, this study indicated that establishing an immune score model combined with BAP1 mutation can better predict the prognosis of patients, screen suitable ccRCC patients for immunotherapy, and select more appropriate drug combinations.Cardiac muscle is extremely sensitive to changes in loading conditions; the microgravity during space flight can cause cardiac remodeling and function decline. At present, the mechanism of microgravity-induced cardiac remodeling remains to be revealed. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is an important activator of pressure overload-induced cardiac remodeling by stabilizing disheveled segment polarity proteins 2 (DVL2) and activating the calcium-calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 4 (HDAC4)/myocyte-specific enhancer factor 2C (MEF2C) axis. However, the role of WWP1 in cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether WWP1 was also involved in the regulation of cardiac remodeling caused by microgravity. Firstly, we detected the expression of WWP1 and DVL2 in the heart from mice and monkeys after simulated microgravity using western blotting and immunohistochemistry. Secondly, WWP1 knockout (KO) and wild-type (WT) mice were subjected to tail suspension (TS) to simulate microgravity effect. We assessed the cardiac remodeling in morphology and function through a histological analysis and echocardiography. Finally, we detected the phosphorylation levels of CaMKII and HDAC4 in the hearts from WT and WWP1 KO mice after TS. The results revealed the increased expression of WWP1 and DVL2 in the hearts both from mice and monkeys after simulated microgravity. WWP1 deficiency alleviated simulated microgravity-induced cardiac atrophy and function decline. The histological analysis demonstrated WWP1 KO inhibited the decreases in the size of individual cardiomyocytes of mice after tail suspension. WWP1 KO can inhibit the activation of the DVL2/CaMKII/HDAC4 pathway in the hearts of mice induced by simulated microgravity. These results demonstrated WWP1 as a potential therapeutic target for cardiac remodeling and function decline induced by simulated microgravity.The development of cancer immunotherapy, particularly immune checkpoint blockade therapy, has made major breakthroughs in the therapy of cancers. However, less than one-third of the cancer patients obtain significant and long-lasting therapeutic effects by cancer immunotherapy. Over the past few decades, cancer-related inflammations have been gradually more familiar to us. It's known that chronic inflammation in tumor microenvironment (TME) plays a predominant role in tumor immunosuppression. Tumor-associated extracellular matrix (ECM), as a core member of TME, has been a research hotspot recently. A growing number of studies indicate that tumor-associated ECM is one of the major obstacles to realizing more successful cases of cancer immunotherapy. In this review, we discussed the potential application of tumor-associated ECM in the cancer immunity and its aide potentialities to anti-tumor immunotherapy.Secondary lymphedema is characterized by lymphatic fluid retention and subsequent tissue swelling in one or both limbs that can lead to decreased quality of life. It often arises after loss, obstruction, or blockage of lymphatic vessels due to multifactorial modalities, such as lymphatic insults after surgery, immune system dysfunction, deposition of fat that compresses the lymphatic capillaries, fibrosis, and inflammation. Although secondary lymphedema is often associated with breast cancer, the condition can occur in patients with any type of cancer that requires lymphadenectomy such as gynecological, genitourinary, or head and neck cancers. MicroRNAs demonstrate pivotal roles in regulating gene expression in biological processes such as lymphangiogenesis, angiogenesis, modulation of the immune system, and oxidative stress. MicroRNA profiling has led to the discovery of the molecular mechanisms involved in the pathophysiology of auto-immune, inflammation-related, and metabolic diseases. Although the role of microRNAs in regulating secondary lymphedema is yet to be elucidated, the crosstalk between microRNAs and molecular factors involved in the pathological features of lymphedema, such as skin fibrosis, inflammation, immune dysregulation, and aberrant lipid metabolism have been demonstrated in several studies. MicroRNAs have the potential to serve as biomarkers for diseases and elucidation of their roles in lymphedema can provide a better understanding or new insights of the mechanisms underlying this debilitating condition.Hox genes encode evolutionary conserved transcription factors that specify the anterior-posterior axis in all bilaterians. Being well known for their role in patterning ectoderm-derivatives, such as CNS and spinal cord, Hox protein function is also crucial in mesodermal patterning. While well described in the case of the vertebrate skeleton, much less is known about Hox functions in the development of different muscle types. In contrast to vertebrates however, studies in the fruit fly, Drosophila melanogaster, have provided precious insights into the requirement of Hox at multiple stages of the myogenic process. Here, we provide a comprehensive overview of Hox protein function in Drosophila and vertebrate muscle development, with a focus on the molecular mechanisms underlying target gene regulation in this process. Emphasizing a tight ectoderm/mesoderm cross talk for proper locomotion, we discuss shared principles between CNS and muscle lineage specification and the emerging role of Hox in neuromuscular circuit establishment.AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis under conditions of energy stress. Though heart is one of the most energy requiring organs and depends on a perfect match of energy supply with high and fluctuating energy demand to maintain its contractile performance, the role of AMPK in this organ is still not entirely clear, in particular in a non-pathological setting. In this work, we characterized cardiomyocyte-specific, inducible AMPKα1 and α2 knockout mice (KO), where KO was induced at the age of 8 weeks, and assessed their phenotype under physiological conditions. In the heart of KO mice, both AMPKα isoforms were strongly reduced and thus deleted in a large part of cardiomyocytes already 2 weeks after tamoxifen administration, persisting during the entire study period. AMPK KO had no effect on heart function at baseline, but alterations were observed under increased workload induced by dobutamine stress, consistent with lower endurance exercise capacity observed in AMPK KO mice. AMPKα deletion also induced a decrease in basal metabolic rate (oxygen uptake, energy expenditure) together with a trend to lower locomotor activity of AMPK KO mice 12 months after tamoxifen administration. GSK-3 assay Loss of AMPK resulted in multiple alterations of cardiac mitochondria reduced respiration with complex I substrates as measured in isolated mitochondria, reduced activity of complexes I and IV, and a shift in mitochondrial cristae morphology from lamellar to mixed lamellar-tubular. A strong tendency to diminished ATP and glycogen level was observed in older animals, 1 year after tamoxifen administration. Our study suggests important roles of cardiac AMPK at increased cardiac workload, potentially limiting exercise performance. This is at least partially due to impaired mitochondrial function and bioenergetics which degrades with age.Precise regulation of angiogenesis is required for organ development, wound repair, and tumor progression. Here, we identified a novel gene, nxhl (New XingHuo light), that is conserved in vertebrates and that plays a crucial role in vascular integrity and angiogenesis. Bioinformatic analysis uncovered its essential roles in development based on co-expression with several key developmental genes. Knockdown of nxhl in zebrafish causes global and pericardial edema, loss of blood circulation, and vascular defects characterized by both reduced vascularization in intersegmental vessels and decreased sprouting in the caudal vein plexus. The nxhl gene also affects human endothelial cell behavior in vitro. We found that nxhl functions in part by targeting VE-PTP through interaction with NCL (nucleolin). Loss of ptprb (a VE-PTP ortholo) in zebrafish resulted in defects similar to nxhl knockdown. Moreover, nxhl deficiency attenuates tumor invasion and proteins (including VE-PTP and NCL) associated with angiogenesis and EMT. These findings illustrate that nxhl can regulate angiogenesis via a novel nxhl-NCL-VE-PTP axis, providing a new therapeutic target for modulating vascular formation and function, especially for cancer treatment.Treatment with immune checkpoint inhibitors (ICIs) has considerably improved prognosis in multiple cancers. However, regardless of PD-L1 expression and TMB, better predictive biomarkers are required to identify ICI-responsive patients. We analyzed a pan-cancer cohort as the discovery cohort to identify the role of Max's giant associated protein (MGA) mutation in the outcome of ICI treatment in different types of cancers. A pooled lung adenocarcinoma (LUAD) cohort was considered as the validation cohort. Another two LUAD cohorts who received conventional treatment were included for prognostic analysis and mechanism exploration. In the discovery cohort, MGA mutation was a favorable survival biomarker for patients with LUAD than in those with other types of cancers. MGA mutation was positively correlated with the TMB score. The results of the validation cohort were consistent with those of the discovery cohort. Patients with MGA mutation in the TMB-low subgroup had longer survival. Two LUAD cohorts who received standard treatment showed that the MGA mutation was not a prognostic biomarker for standard treatment. Mechanically, we found that the co-mutant genes did not affect the prognostic role of MGA mutation. Gene-set enrichment analysis revealed that genes belonging to the immunodeficiency pathway were enriched in the MGA wild-type group in LUAD. Moreover, activated NK cells were more enriched in the MGA mutant LUAD group. In conclusion, our results demonstrated that MGA mutation was an independent predictive biomarker for ICI therapy. These results may provide a novel insight into identifying potential patients with LUAD for ICI therapy.