Mccurdysantana0672
42, 95% CI 1.11-1.82,
= 0.005). In addition, the signature resembling that of alkylating agents and a newly discovered signature both exhibited extended prognoses (both HR <1,
< 0.05). Based on the activities of the extracted 6 mutational signatures, we identified one immune subtype that was significantly associated with better ICI outcomes (HR 0.44, 95% CI 0.23-0.87,
= 0.017).
We uncovered several novel SMGs and re-annotated mutational signatures that are linked to immunotherapy response or resistance. In addition, an immune subtype was found to exhibit favorable prognoses. Further studies are required to validate these findings.
We uncovered several novel SMGs and re-annotated mutational signatures that are linked to immunotherapy response or resistance. In addition, an immune subtype was found to exhibit favorable prognoses. Further studies are required to validate these findings.Multiple myeloma (MM) remains an incurable plasma cell malignancy. While its origin is enigmatic, an association with infectious pathogens including hepatitis C virus (HCV) has been suggested. Here we report nine patients with monoclonal gammopathy of undetermined significance (MGUS) or MM with previous HCV infection, six of whom received antiviral treatment. We studied the evolution of the gammopathy disease, according to anti-HCV treatment and antigen specificity of purified monoclonal immunoglobulin, determined using the INNO-LIA™ HCV Score assay, dot-blot assays, and a multiplex infectious antigen microarray. The monoclonal immunoglobulin from 6/9 patients reacted against HCV. Four of these patients received antiviral treatment and had a better evolution than untreated patients. Following antiviral treatment, one patient with MM in third relapse achieved complete remission with minimal residual disease negativity. For two patients who did not receive antiviral treatment, disease progressed. For the two patients whose monoclonal immunoglobulin did not react against HCV, antiviral treatment was not effective for MGUS or MM disease. Our results suggest a causal relationship between HCV infection and MGUS and MM progression. When HCV was eliminated, chronic antigen-stimulation disappeared, allowing control of clonal plasma cells. This opens new possibilities of treatment for MGUS and myeloma.Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.Brain organoids, or brainoids, have shown great promise in the study of central nervous system (CNS) infection. Modeling Zika virus (ZIKV) infection in brain organoids may help elucidate the relationship between ZIKV infection and microcephaly. Brain organoids have been used to study the pathogenesis of SARS-CoV-2, human immunodeficiency virus (HIV), HSV-1, and other viral infections of the CNS. In this review, we summarize the advances in the development of viral infection models in brain organoids and their potential application for exploring mechanisms of viral infections of the CNS and in new drug development. The existing limitations are further discussed and the prospects for the development and application of brain organs are prospected.
Cardiac arrest/cardiopulmonary resuscitation (CA/CPR) represents one of the devastating medical emergencies and is associated with high mortality and neuro-disability. Post-cardiac arrest syndrome (PCAS) is mechanistically ascribed to acute systemic ischemia/reperfusion(I/R) injury. The lncRNA/microRNA/mRNA networks have been found to play crucial roles in the pathogenesis of the hypoxia-responsive diseases. Nonetheless, the precise molecular mechanisms by which lncRNA/miRNA/mRNA axes are involved in the astrocyte-microglia crosstalk in CA/CPR have not been fully elucidated.
We collected and purified the exosomes from the blood of CA/CPR patients and supernatant of OGD/R-stimulated astrocytes. On the basis of microarray analysis, bioinformatic study, and luciferase activity determination, we speculated that lncRNA GAS5/miR-137 is implicated in the astrocyte-microglia crosstalk under the insult of systemic I/R injury. The regulation of lncRNA GAS5/miR-137 on INPP4B was examined by cellular transfection in ly modulated its expression. Western blotting exhibited that PI3K and Akt phosphorylation was increased when lncRNA GAS5 was silenced or miR-137 was over-expressed. However, PI3K and Akt phosphorylation was notably suppressed in the absence of miR-137, almost reversing their phosphorylation in the silencing lncRNA GAS5 group. Then we found that GAS5 siRNA or miR-137 mimic significantly increased cell viability and alleviated apoptosis after OGD/R injury. Furthermore, over-expression of miR-137 attenuated microglial apoptosis and neuroinflammation in CA/CPR mice model, exhibiting significantly better behavioral tests after CA/CPR.
LncRNA GAS5/miR-137 may be involved in the astrocyte-microglia communication that inhibits PI3K/Akt signaling activation
regulation of INPP4B during CA/CPR.
LncRNA GAS5/miR-137 may be involved in the astrocyte-microglia communication that inhibits PI3K/Akt signaling activation via regulation of INPP4B during CA/CPR.IKAROS and CTLA4 deficiencies are inborn errors of immunity and show similar clinical phenotypes, including hypogammaglobulinemia and autoimmune diseases (ADs). However, the differences in clinical features and pathogenesis of these are not fully understood. Therefore, we performed systematic literature reviews for IKAROS and CTLA4 deficiencies. The reviews suggested that patients with IKAROS deficiency develop AD earlier than hypogammaglobulinemia. However, no study assessed the detailed changes in clinical manifestations over time; this was likely due to the cross-sectional nature of the studies. Therefore, we conducted a retrospective longitudinal study on IKAROS and CTLA4 deficiencies in our cohort to evaluate the clinical course over time. In patients with IKAROS deficiency, AD and hypogammaglobulinemia often develop in that order, and AD often resolves before the onset of hypogammaglobulinemia; these observations were not found in patients with CTLA4 deficiency. Understanding this difference in the clinical course helps in the clinical management of both. Furthermore, our results suggest B- and T-cell-mediated ADs in patients with IKAROS and CTLA4 deficiencies, respectively.
There is limited information on the functional neutralizing capabilities of breastmilk SARS-CoV-2-specific antibodies and the potential adulteration of breastmilk with vaccine mRNA after SARS-CoV-2 mRNA vaccination.
We conducted a prospective cohort study of lactating healthcare workers who received the BNT162b2 vaccine and their infants. ABT-737 supplier The presence of SARS-CoV-2 neutralizing antibodies, antibody isotypes (IgG, IgA, IgM) and intact mRNA in serum and breastmilk was evaluated at multiple time points using a surrogate neutralizing assay, ELISA, and PCR, over a 6 week period of the two-dose vaccination given 21 days apart.
Thirty-five lactating mothers, median age 34 years (IQR 32-36), were included. All had detectable neutralizing antibodies in the serum immediately before dose 2, with significant increase in neutralizing antibody levels 7 days after this dose [median 168.4 IU/ml (IQR 100.7-288.5) compared to 2753.0 IU/ml (IQR 1627.0-4712.0), p <0.001]. Through the two vaccine doses, all mothers had dls of vaccine mRNA were detected in the serum of vaccinated mothers with occasional transfer to their breastmilk, but we did not detect evidence of infant sensitization. Importantly, the presence of breastmilk neutralising antibodies likely provides a foundation for passive immunisation of the breastmilk-fed infant.
Majority of lactating mothers had detectable SARS-CoV-2 antibody isotypes and neutralizing antibodies in serum and breastmilk, especially after dose 2 of BNT162b2 vaccination. Transient, low levels of vaccine mRNA were detected in the serum of vaccinated mothers with occasional transfer to their breastmilk, but we did not detect evidence of infant sensitization. Importantly, the presence of breastmilk neutralising antibodies likely provides a foundation for passive immunisation of the breastmilk-fed infant.Leishmaniasis continues to afflict known and newer endemic sites despite global efforts towards its control and elimination. In this regard, the emergence of newer endemic sites with unusual disease formats is recognized wherein Leishmania donovani complex classically known to cause visceral disease is demonstrated to cause cutaneous manifestation. In this context, atypical cutaneous leishmaniasis (CL) cases caused by L. donovani genetic variants from the newer endemic state of Himachal Pradesh (HP) in India are beginning to be understood in terms of parasite determinants. The atypical CL manifestation further needs to be explored to define host immune correlates with a possible role in driving the unusual disease progression. In the given study, we performed comprehensive systemic-immune profiling of the atypical CL patients from the study area in HP, India, in comparison with the classical visceral leishmaniasis (VL) patients from the northeast region of India. The systemic immune response was studied usingerline atypical disease manifestation such that L. donovani, a generally visceralizing parasite species cause skin localized cutaneous lesions.Cytolytic T cell responses are predicted to be biased towards membrane proteins. The peptide-binding grooves of most alleles of histocompatibility complex class I (MHC-I) are relatively hydrophobic, therefore peptide fragments derived from human transmembrane helices (TMHs) are predicted to be presented more often as would be expected based on their abundance in the proteome. However, the physiological reason of why membrane proteins might be over-presented is unclear. In this study, we show that the predicted over-presentation of TMH-derived peptides is general, as it is predicted for bacteria and viruses and for both MHC-I and MHC-II, and confirmed by re-analysis of epitope databases. Moreover, we show that TMHs are evolutionarily more conserved, because single nucleotide polymorphisms (SNPs) are present relatively less frequently in TMH-coding chromosomal regions compared to regions coding for extracellular and cytoplasmic protein regions. Thus, our findings suggest that both cytolytic and helper T cells are more tuned to respond to membrane proteins, because these are evolutionary more conserved.