Mccrackenemery7723

Z Iurium Wiki

Currently, DNA strand displacement is often used to build neural networks or solve logical problems. While there are few studies on the use of DNA strand displacement to solve the higher order equations. In this paper, the catalysis, degradation, annihilation and adjusted reaction modules are built through DNA strand displacement. The chemical reaction networks of the corresponding higher order equations and simultaneous equations are established through these modules, and these chemical reaction networks can be used to build analog circuits to solve binary primary simultaneous equations and binary quadratic simultaneous equations. Finally, through Visual DSD software verification, this design can realize the solution of binary primary simultaneous equations and binary quadratic simultaneous equations, which provides a reference for DNA computation in the future.To restore the sight of individuals blinded by outer retinal degeneration, numerous retinal prostheses have been developed. However, the performance of those implants is still hampered by some factors including the lack of comprehensive understanding of the electrically-evoked responses arising in various retinal ganglion cell (RGC) types. In this study, we characterized the electrically-evoked network-mediated responses (hereafter referred to as electric responses) of ON-OFF direction-selective (DS) RGCs in rabbit and mouse retinas for the first time. Interestingly, both species in common demonstrated strong negative correlations between spike counts of electric responses and direction selective indices (DSIs), suggesting electric stimulation activates inhibitory presynaptic neurons that suppress null direction responses for high direction tuning in their light responses. https://www.selleckchem.com/products/Rapamycin.html The DS cells of the two species showed several differences including different numbers of bursts. Also, spiking patterns were more heterogeneous across DS RGCs of rabbits than those of mice. The electric response magnitudes of rabbit DS cells showed positive and negative correlations with ON and OFF light response magnitudes to preferred direction motion, respectively. But the mouse DS cells showed positive correlations in both comparisons. Our Fano Factor (FF) and spike time tiling coefficient (STTC) analyses revealed that spiking consistencies across repeats were reduced in late electric responses in both species. Moreover, the response consistencies of DS RGCs were lower than those of non-DS RGCs. Our results indicate the species-dependent retinal circuits may result in different electric response features and therefore suggest a proper animal model may be crucial in prosthetic researches.Supplemental information captured from HRV can provide deeper insight into nervous system function and consequently improve evaluation of brain function. Therefore, it is of interest to combine both EEG and HRV. However, irregular nature of time spans between adjacent heartbeats makes the HRV hard to be directly fused with EEG timeseries. Current study performed a pioneering work in integrating EEG-HRV information in a single marker called cumulant ratio, quantifying how far EEG dynamics deviate from self-similarity compared to HRV dynamics. Experimental data recorded using BrainStatus device with single ECG and 10 EEG channels from healthy-brain patients undergoing operation (N = 20) were used for the validation of the proposed method. Our analyses show that the EEG to HRV ratio of first, second and third cumulants gets systematically closer to zero with increase in depth of anesthesia, respectively 29.09%, 65.0% and 98.41%. Furthermore, extracting multifractality properties of both heart and brain activities and encoding them into a 3-sample numeric code of relative cumulants does not only encapsulates the comparison of two evenly and unevenly spaced variables of EEG and HRV into a concise unitless quantity, but also reduces the impact of outlying data points.

Retinal prostheses must be able to activate cells in a selective way in order to restore high-fidelity vision. However, inadvertent activation of far-away retinal ganglion cells (RGCs) through electrical stimulation of axon bundles can produce irregular and poorly controlled percepts, limiting artificial vision. In this work, we aim to provide an algorithmic solution to the problem of detecting axon bundle activation with a bi-directional epiretinal prostheses.

The algorithm utilizes electrical recordings to determine the stimulation current amplitudes above which axon bundle activation occurs. Bundle activation is defined as the axonal stimulation of RGCs with unknown soma and receptive field locations, typically beyond the electrode array. The method exploits spatiotemporal characteristics of electrically-evoked spikes to overcome the challenge of detecting small axonal spikes.

The algorithm was validated using large-scale, single-electrode and short pulse, ex vivo stimulation and recording experimentcal implants, and the method may therefore be broadly applicable.Virtual traffic benefits a variety of applications, including video games, traffic engineering, autonomous driving, and virtual reality. To date, traffic visualization via different simulation models can reconstruct detailed traffic flows. However, each specific behavior of vehicles is always described by establishing an independent control model. Moreover, mutual interactions between vehicles and other road users are rarely modeled in existing simulators. An all-in-one simulator that considers the complex behaviors of all potential road users in a realistic urban environment is urgently needed. In this work, we propose a novel, extensible, and microscopic method to build heterogeneous traffic simulation using the force-based concept. This force-based approach can accurately replicate the sophisticated behaviors of various road users and their interactions in a simple and unified manner. We calibrate the model parameters using real-world traffic trajectory data. The effectiveness of this approach is demonstrated through many simulation experiments, as well as comparisons to real-world traffic data and popular microscopic simulators for traffic animation.Supporting the translation from natural language (NL) query to visualization (NL2VIS) can simplify the creation of data visualizations because if successful, anyone can generate visualizations by their natural language from the tabular data. The state-of-the-art NL2VIS approaches (e.g., NL4DV and FlowSense) are based on semantic parsers and heuristic algorithms, which are not end-to-end and are not designed for supporting (possibly) complex data transformations. Deep neural network powered neural machine translation models have made great strides in many machine translation tasks, which suggests that they might be viable for NL2VIS as well. In this paper, we present ncNet, a Transformer-based sequence-to-sequence model for supporting NL2VIS, with several novel visualization-aware optimizations, including using attention-forcing to optimize the learning process, and visualization-aware rendering to produce better visualization results. To enhance the capability of machine to comprehend natural language queries, ncNet is also designed to take an optional chart template (e.g., a pie chart or a scatter plot) as an additional input, where the chart template will be served as a constraint to limit what could be visualized. We conducted both quantitative evaluation and user study, showing that ncNet achieves good accuracy in the nvBench benchmark and is easy-to-use.Classifying hard samples in the course of RGBT tracking is a quite challenging problem. Existing methods only focus on enlarging the boundary between positive and negative samples, but ignore the relations of multilevel hard samples, which are crucial for the robustness of hard sample classification. To handle this problem, we propose a novel Multi-Modal Multi-Margin Metric Learning framework named M5L for RGBT tracking. In particular, we divided all samples into four parts including normal positive, normal negative, hard positive and hard negative ones, and aim to leverage their relations to improve the robustness of feature embeddings, e.g., normal positive samples are closer to the ground truth than hard positive ones. To this end, we design a multi-modal multi-margin structural loss to preserve the relations of multilevel hard samples in the training stage. In addition, we introduce an attention-based fusion module to achieve quality-aware integration of different source data. Extensive experiments on large-scale datasets testify that our framework clearly improves the tracking performance and performs favorably the state-of-the-art RGBT trackers.We present a volumetric mesh-based algorithm for parameterizing the placenta to a flattened template to enable effective visualization of local anatomy and function. MRI shows potential as a research tool as it provides signals directly related to placental function. However, due to the curved and highly variable in vivo shape of the placenta, interpreting and visualizing these images is difficult. We address interpretation challenges by mapping the placenta so that it resembles the familiar ex vivo shape. We formulate the parameterization as an optimization problem for mapping the placental shape represented by a volumetric mesh to a flattened template. We employ the symmetric Dirichlet energy to control local distortion throughout the volume. Local injectivity in the mapping is enforced by a constrained line search during the gradient descent optimization. We validate our method using a research study of 111 placental shapes extracted from BOLD MRI images. Our mapping achieves sub-voxel accuracy in matching the template while maintaining low distortion throughout the volume. We demonstrate how the resulting flattening of the placenta improves visualization of anatomy and function. Our code is freely available at https//github.com/ mabulnaga/placenta-flattening.Imaging applications tailored towards ultrasound-based treatment, such as high intensity focused ultrasound (FUS), where higher power ultrasound generates a radiation force for ultrasound elasticity imaging or therapeutics/theranostics, are affected by interference from FUS. The artifact becomes more pronounced with intensity and power. To overcome this limitation, we propose FUS-net, a method that incorporates a CNN-based U-net autoencoder trained end-to-end on 'clean' and 'corrupted' RF data in Tensorflow 2.3 for FUS artifact removal. The network learns the representation of RF data and FUS artifacts in latent space so that the output of corrupted RF input is clean RF data. We find that FUS-net perform 15% better than stacked autoencoders (SAE) on evaluated test datasets. B-mode images beamformed from FUS-net RF shows superior speckle quality and better contrast-to-noise (CNR) than both notch-filtered and adaptive least means squares filtered RF data. Furthermore, FUS-net filtered images had lower errors and higher similarity to clean images collected from unseen scans at all pressure levels. Lastly, FUS-net RF can be used with existing cross-correlation speckle-tracking algorithms to generate displacement maps. FUS-net currently outperforms conventional filtering and SAEs for removing high pressure FUS interference from RF data, and hence may be applicable to all FUS-based imaging and therapeutic methods.

Autoři článku: Mccrackenemery7723 (Bille Kenny)