Mccormickrosenkilde6097

Z Iurium Wiki

The population can dynamically converge to a pruning state. This can be interpreted as dropout leading to pruning the network. From an implementation perspective, unlike most of the pruning methods, EDropout can prune neural networks without manually modifying the network architecture code. We have evaluated the proposed method on different flavors of ResNets, AlexNet, l₁ pruning, ThinNet, ChannelNet, and SqueezeNet on the Kuzushiji, Fashion, CIFAR-10, CIFAR-100, Flowers, and ImageNet data sets, and compared the pruning rate and classification performance of the models. The networks trained with EDropout on average achieved a pruning rate of more than 50% of the trainable parameters with approximately less then 5% and less then 1% drop of Top-1 and Top-5 classification accuracy, respectively.This article is devoted to investigating finite-time synchronization (FTS) for coupled neural networks (CNNs) with time-varying delays and Markovian jumping topologies by using an intermittent quantized controller. Due to the intermittent property, it is very hard to surmount the effects of time delays and ascertain the settling time. A new lemma with novel finite-time stability inequality is developed first. Then, by constructing a new Lyapunov functional and utilizing linear programming (LP) method, several sufficient conditions are obtained to assure that the Markovian CNNs achieve synchronization with an isolated node in a settling time that relies on the initial values of considered systems, the width of control and rest intervals, and the time delays. The control gains are designed by solving the LP. Moreover, an optimal algorithm is given to enhance the accuracy in estimating the settling time. Finally, a numerical example is provided to show the merits and correctness of the theoretical analysis.Model quantization is essential to deploy deep convolutional neural networks (DCNNs) on resource-constrained devices. In this article, we propose a general bitwidth assignment algorithm based on theoretical analysis for efficient layerwise weight and activation quantization of DCNNs. The proposed algorithm develops a prediction model to explicitly estimate the loss of classification accuracy led by weight quantization with a geometrical approach. Consequently, dynamic programming is adopted to achieve optimal bitwidth assignment on weights based on the estimated error. Furthermore, we optimize bitwidth assignment for activations by considering the signal-to-quantization-noise ratio (SQNR) between weight and activation quantization. The proposed algorithm is general to reveal the tradeoff between classification accuracy and model size for various network architectures. Extensive experiments demonstrate the efficacy of the proposed bitwidth assignment algorithm and the error rate prediction model. Furthermore, the proposed algorithm is shown to be well extended to object detection.In this article, a decentralized adaptive neural network (NN) event-triggered sensor failure compensation control issue is investigated for nonlinear switched large-scale systems. Due to the presence of unknown control coefficients, output interactions, sensor faults, and arbitrary switchings, previous works cannot solve the investigated issue. First, to estimate unmeasured states, a novel observer is designed. Then, NNs are utilized for identifying both interconnected terms and unstructured uncertainties. A novel fault compensation mechanism is proposed to circumvent the obstacle caused by sensor faults, and a Nussbaum-type function is introduced to tackle unknown control coefficients. A novel switching threshold strategy is developed to balance communication constraints and system performance. Based on the common Lyapunov function (CLF) method, an event-triggered decentralized control scheme is proposed to guarantee that all closed-loop signals are bounded even if sensors undergo failures. It is shown that the Zeno behavior is avoided. Finally, simulation results are presented to show the validity of the proposed strategy.Energy consumption is an important issue for resource-constrained wireless neural recording applications with limited data bandwidth. Compressed sensing (CS) is a promising framework for addressing this challenge because it can compress data in an energy-efficient way. Recent work has shown that deep neural networks (DNNs) can serve as valuable models for CS of neural action potentials (APs). However, these models typically require impractically large datasets and computational resources for training, and they do not easily generalize to novel circumstances. Here, we propose a new CS framework, termed APGen, for the reconstruction of APs in a training-free manner. It consists of a deep generative network and an analysis sparse regularizer. We validate our method on two in vivo datasets. Even without any training, APGen outperformed model-based and data-driven methods in terms of reconstruction accuracy, computational efficiency, and robustness to AP overlap and misalignment. The computational efficiency of APGen and its ability to perform without training make it an ideal candidate for long-term, resource-constrained, and large-scale wireless neural recording. It may also promote the development of real-time, naturalistic brain-computer interfaces.Glioblastoma Multiforme (GBM), the most malignant human tumour, can be defined by the evolution of growing bio-nanomachine networks within an interplay between self-renewal (Grow) and invasion (Go) potential of mutually exclusive phenotypes of transmitter and receiver cells. Herein, we present a mathematical model for the growth of GBM tumour driven by molecule-mediated inter-cellular communication between two populations of evolutionary bio-nanomachines representing the Glioma Stem Cells (GSCs) and Glioma Cells (GCs). The contribution of each subpopulation to tumour growth is quantified by a voxel model representing the end to end inter-cellular communication models for GSCs and progressively evolving invasiveness levels of glioma cells within a network of diverse cell configurations. AM-2282,Antibiotic AM-2282,STS Mutual information, information propagation speed and the impact of cell numbers and phenotypes on the communication output and GBM growth are studied by using analysis from information theory. The numerical simulations show that the progression of GBM is directly related to higher mutual information and higher input information flow of molecules between the GSCs and GCs, resulting in an increased tumour growth rate.

Autoři článku: Mccormickrosenkilde6097 (Enevoldsen Hickey)